研究生: |
李倩筠 Lee, Chien-Yun |
---|---|
論文名稱: |
Structural and functional characterization of the regulator RcsB for capsule synthesis in Klebsiella pneumoniae 克雷白氏肺炎桿菌中調控莢膜多醣體生合成之調節蛋白RcsB結構與功能之特性分析 |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: |
張晃猷
Chang, Hwan-You 陳金榜 Chen, Chin-Pan 洪慧芝 Hung, Hui-Chih |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 克雷白氏肺炎桿菌 、莢膜多醣體 |
外文關鍵詞: | RcsB, Klebsiella pneumoniae, capsular polysaccharide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
克雷白氏肺炎桿菌 (Klebsiella pneumoniae) 為院內感染常見的病原菌之一,在此菌的細胞外膜上具有大量且複雜的莢膜多醣體 (capsular polysaccharide, CPS),用以躲避宿主的吞噬作用(Phagocytosis) 以提高存活率及感染力。在此細菌中,調控CPS生合成之基因 (cps genes)由雙分子系統感應蛋白RcsC與調節蛋白 RcsB所參與,RcsB在此雙分子系統中的必要性已被確立但其調控機制仍未被清楚的探討。本篇研究旨在探討磷酸化對於RcsB調控cps genes之影響,藉由模擬磷酸化之突變型D56E及野生型WT結構與功能之比較,建構RcsB被磷酸化後的活化態對cps genes之調控機制。利用電泳凝膠位移測定 (EMSA),我們發現D56E對於 cps genes啟動子具有較高的結合能力,意味著磷酸化後的RcsB能夠顯著地增加cps genes的表現量。此外,從四級結構的分析中發現,D56E具有四聚體 (tetramer)的存在,此四聚體不僅能夠增加RcsB對於 cps genes啟動子的結合能力,更能有效地提升結構的穩定性。我們剃除在此類調節蛋白中具有高度保留性的C端DNA 結合區間 (C-terminal DNA-binding domain) ,藉以研究磷酸化對N端接收磷酸化區間 (N-terminal phosphoreceiver domain) 之影響,結果顯示N端區間表現出與全長相似的結構特性,因此我們推論在多聚化 (Oligomerization) 的現象中,N端區間扮演了關鍵的角色。我們藉由核磁共振更進一步地分析了活化態N端區間 (D56EN) 之構形變化,發現有超過百分之二十的胺基酸有明顯的結構改變。因此我們推論出: 在此雙分子系統受到環境的變化後,藉由磷酸化RcsB的N端區間來產生結構改變,此改變造成四聚體的形成進而提升對啟動子的結合能力,因此促進莢膜多醣體之生合成。
Klebsiella pneumoniae, an important pathogen of hospital infections, necessarily produces plenty of capsular polysaccharide (CPS) to prevent phagocytosis from the hosts. The response regulator RcsB is essential for regulating CPS prodution but its regulatory mechanism remains unclear. Here, we cloned wild-type RcsB to characterize the structural and functional properties. To clarify the effect of phosphorylation in RcsB, a constitutive mutant D56E was also constructed. Electrophoretic mobility shift assay reveals that D56E apparently enhanced its binding ability with cps gene promoter, indicating phosphorylation might raise expression level of cps genes. Moreover, our biophysical studies demonstrate that D56E not only triggers formation of tetramer via charge-charge interactions but also enhances thermal stability, which is not found in wild-type RcsB. According to our bioinformatic analysis, N-terminal phosphoreceiver domain plays an important role in oligomerization. Our results show that N-terminal domain exhibits similar biophysical properties with that of full-length RcsB. Interestingly, N-terminal domain of D56E has a quite different HSQC spectrum as compared with that of wild-type RcsB, implying conformation is moderately changed upon phosphorylation. Hence we proposed that the N-terminal domain has to be phosphorylated to alter its structure, thus triggering the formation of oligomers. This oligomer is critical for promoting DNA-binding in regulation of CPS production.
Allen, P., C. A. Hart, et al. (1987). "Isolation from Klebsiella and characterization of two rcs genes that activate colanic acid capsular biosynthesis in Escherichia coli." J Gen Microbiol 133(2): 331-340.
Arakawa, Y., R. Wacharotayankun, et al. (1995). "Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid." J Bacteriol 177(7): 1788-1796.
Beier, D. and R. Gross (2006). "Regulation of bacterial virulence by two-component systems." Curr Opin Microbiol 9(2): 143-152.
Bellsolell, L., P. Cronet, et al. (1996). "The three-dimensional structure of two mutants of the signal transduction protein CheY suggest its molecular activation mechanism." J Mol Biol 257(1): 116-128.
Bereswill, S. and K. Geider (1997). "Characterization of the rcsB gene from Erwinia amylovora and its influence on exoploysaccharide synthesis and virulence of the fire blight pathogen." J Bacteriol 179(4): 1354-1361.
Bernhard, F., K. Poetter, et al. (1990). "The rcsA gene from Erwinia amylovora: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis." Mol Plant Microbe Interact 3(6): 429-437.
Boulanger, A., A. Francez-Charlot, et al. (2005). "Multistress regulation in Escherichia coli: expression of osmB involves two independent promoters responding either to sigmaS or to the RcsCDB His-Asp phosphorelay." J Bacteriol 187(9): 3282-3286.
Bourret, R. B., S. K. Drake, et al. (1993). "Activation of the phosphosignaling protein CheY. II. Analysis of activated mutants by 19F NMR and protein engineering." J Biol Chem 268(18): 13089-13096.
Carballes, F., C. Bertrand, et al. (1999). "Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB." Mol Microbiol 34(3): 442-450.
Chang, H. Y., J. H. Lee, et al. (1996). "Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43." Microb Pathog 20(5): 255-261.
Cho, H. S., J. G. Pelton, et al. (2001). "Phosphoaspartates in bacterial signal transduction." Curr Opin Struct Biol 11(6): 679-684.
Coleman, M., R. Pearce, et al. (1990). "Molecular cloning, expression and nucleotide sequence of the rcsA gene of Erwinia amylovora, encoding a positive regulator of capsule expression: evidence for a family of related capsule activator proteins." J Gen Microbiol 136(9): 1799-1806.
Davalos-Garcia, M., A. Conter, et al. (2001). "Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli." J Bacteriol 183(20): 5870-5876.
Dutta, R., L. Qin, et al. (1999). "Histidine kinases: diversity of domain organization." Mol Microbiol 34(4): 633-640.
Fiedler, U. and V. Weiss (1995). "A common switch in activation of the response regulators NtrC and PhoB: phosphorylation induces dimerization of the receiver modules." EMBO J 14(15): 3696-3705.
Fontana, A., P. P. de Laureto, et al. (2004). "Probing protein structure by limited proteolysis." Acta Biochim Pol 51(2): 299-321.
Gervais, F. G. and G. R. Drapeau (1992). "Identification, cloning, and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12." J Bacteriol 174(24): 8016-8022.
Gervais, F. G., P. Phoenix, et al. (1992). "The rcsB gene, a positive regulator of colanic acid biosynthesis in Escherichia coli, is also an activator of ftsZ expression." J Bacteriol 174(12): 3964-3971.
Golovanov, A. P., G. M. Hautbergue, et al. (2004). "A simple method for improving protein solubility and long-term stability." J Am Chem Soc 126(29): 8933-8939.
Gottesman, S. (1995). "in Two-component Signal Transduction (Hoch, J. A., and
Silhavy T. J., eds)." ASM Pressv, Washington, D. C.: p. 253 - 262.
Gottesman, S., P. Trisler, et al. (1985). "Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes." J Bacteriol 162(3): 1111-1119.
Guermeur, Y., C. Geourjon, et al. (1999). "Improved performance in protein secondary structure prediction by inhomogeneous score combination." Bioinformatics 15(5): 413-421.
Gupte, G., C. Woodward, et al. (1997). "Isolation and characterization of rcsB mutations that affect colanic acid capsule synthesis in Escherichia coli K-12." J Bacteriol 179(13): 4328-4335.
Hess, J. F., K. Oosawa, et al. (1988). "Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis." Cell 53(1): 79-87.
Hubbard, S. J. (1998). "The structural aspects of limited proteolysis of native proteins." Biochim Biophys Acta 1382(2): 191-206.
Jayaratne, P., W. J. Keenleyside, et al. (1993). "Characterization of rcsB and rcsC from Escherichia coli O9:K30:H12 and examination of the role of the rcs regulatory system in expression of group I capsular polysaccharides." J Bacteriol 175(17): 5384-5394.
Kelm, O., C. Kiecker, et al. (1997). "Interaction of the regulator proteins RcsA and RcsB with the promoter of the operon for amylovoran biosynthesis in Erwinia amylovora." Mol Gen Genet 256(1): 72-83.
Knochenmuss, R. (2006). "Ion formation mechanisms in UV-MALDI." Analyst 131(9): 966-986.
Lukat, G. S., B. H. Lee, et al. (1991). "Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis." J Biol Chem 266(13): 8348-8354.
Majdalani, N. and S. Gottesman (2005). "The Rcs phosphorelay: a complex signal transduction system." Annu Rev Microbiol 59: 379-405.
Majdalani, N., M. Heck, et al. (2005). "Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli." J Bacteriol 187(19): 6770-6778.
Majdalani, N., D. Hernandez, et al. (2002). "Regulation and mode of action of the second small RNA activator of RpoS translation, RprA." Mol Microbiol 46(3): 813-826.
McCallum, K. L. and C. Whitfield (1991). "The rcsA gene of Klebsiella pneumoniae O1:K20 is involved in expression of the serotype-specific K (capsular) antigen." Infect Immun 59(2): 494-502.
McCleary, W. R. (1996). "The activation of PhoB by acetylphosphate." Mol Microbiol 20(6): 1155-1163.
Muller-Dieckmann, H. J., A. A. Grantz, et al. (1999). "The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1." Structure 7(12): 1547-1556.
Ninfa, A. J. and B. Magasanik (1986). "Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli." Proc Natl Acad Sci U S A 83(16): 5909-5913.
Nixon, B. T., C. W. Ronson, et al. (1986). "Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC." Proc Natl Acad Sci U S A 83(20): 7850-7854.
Podschun, R. and U. Ullmann (1998). "Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors." Clin Microbiol Rev 11(4): 589-603.
Poetter, K. and D. L. Coplin (1991). "Structural and functional analysis of the rcsA gene from Erwinia stewartii." Mol Gen Genet 229(1): 155-160.
Pristovsek, P., K. Sengupta, et al. (2003). "Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box." J Biol Chem 278(20): 17752-17759.
Pruss, B. M., C. Besemann, et al. (2006). "A complex transcription network controls the early stages of biofilm development by Escherichia coli." J Bacteriol 188(11): 3731-3739.
Schagger, H. (2006). "Tricine-SDS-PAGE." Nat Protoc 1(1): 16-22.
Schnell, R., D. Agren, et al. (2008). "1.9 A structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis." Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 12): 1096-1100.
Simonovic, M. and K. Volz (2001). "A distinct meta-active conformation in the 1.1-A resolution structure of wild-type ApoCheY." J Biol Chem 276(31): 28637-28640.
Simoons-Smit, A. M., A. M. Verweij-van Vught, et al. (1986). "The role of K antigens as virulence factors in Klebsiella." J Med Microbiol 21(2): 133-137.
Sockett, H., S. Yamaguchi, et al. (1992). "Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium." J Bacteriol 174(3): 793-806.
Sola, M., F. X. Gomis-Ruth, et al. (1999). "Three-dimensional crystal structure of the transcription factor PhoB receiver domain." J Mol Biol 285(2): 675-687.
Stock, A. M., V. L. Robinson, et al. (2000). "Two-component signal transduction." Annu Rev Biochem 69: 183-215.
Stock, J. B., A. M. Stock, et al. (1990). "Signal transduction in bacteria." Nature 344(6265): 395-400.
Stout, V. and S. Gottesman (1990). "RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli." J Bacteriol 172(2): 659-669.
Takeda, S., Y. Fujisawa, et al. (2001). "A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC --> YojN --> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour." Mol Microbiol 40(2): 440-450.
Thompson, J. D., D. G. Higgins, et al. (1993). "Improved sensitivity of profile searches through the use of sequence weights and gap excision." Comput Appl Biosci 10: 19-29.
Virlogeux, I., H. Waxin, et al. (1996). "Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis." J Bacteriol 178(6): 1691-1698.
Volkman, B. F., D. Lipson, et al. (2001). "Two-state allosteric behavior in a single-domain signaling protein." Science 291(5512): 2429-2433.
Volz, K. (1993). "Structural conservation in the CheY superfamily." Biochemistry 32(44): 11741-11753.
Wacharotayankun, R., Y. Arakawa, et al. (1992). "Involvement of rcsB in Klebsiella K2 capsule synthesis in Escherichia coli K-12." J Bacteriol 174(3): 1063-1067.
Wang, J. H., Y. C. Liu, et al. (1998). "Primary liver abscess due to Klebsiella pneumoniae in Taiwan." Clin Infect Dis 26(6): 1434-1438.
Wehland, M. and F. Bernhard (2000). "The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria." J Biol Chem 275(10): 7013-7020.
Wehland, M., C. Kiecker, et al. (1999). "Identification of an RcsA/RcsB recognition motif in the promoters of exopolysaccharide biosynthetic operons from Erwinia amylovora and Pantoea stewartii subspecies stewartii." J Biol Chem 274(6): 3300-3307.
West, A. H. and A. M. Stock (2001). "Histidine kinases and response regulator proteins in two-component signaling systems." Trends Biochem Sci 26(6): 369-376.
Whitfield, C. (2006). "Biosynthesis and assembly of capsular polysaccharides in Escherichia coli." Annu Rev Biochem 75: 39-68.
Whitfield, C. and I. S. Roberts (1999). "Structure, assembly and regulation of expression of capsules in Escherichia coli." Mol Microbiol 31(5): 1307-1319.
Wisedchaisri, G., M. Wu, et al. (2008). "Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation." J Mol Biol 378(1): 227-242.
Wyman, C., I. Rombel, et al. (1997). "Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein." Science 275(5306): 1658-1661.