研究生: |
黃正安 |
---|---|
論文名稱: |
探討鋰電池陽極之PAA相關性質以及碳材在其中的影響 The property of PAA modifiers and the effect of different carbon additives in lithium batteries |
指導教授: | 蔡哲正 |
口試委員: |
林居南
俎永熙 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 聚丙烯酸 、酸化碳材 、鋰電池陽極 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著能源議題越來越被重視,儲存能源的電池系統也顯得越來越重要。鋰離子二次電池是可儲蓄能電池中相當重要的一塊,但它也存在著相當多需要被改進的地方。在鋰電池陽極材料中,石墨 (graphite)是最主要被使用的材料,其充放電時特性穩定,體積變化率小,壽命長等優點讓它可以成功被商業化使用,但其可儲存的電容量太低是一個相當大的問題,為了改進此問題,相當多的材料被提出來使用。在所有被使用的材料中,矽 (Si)是具有相當潛力的替代物,因為其可儲存的理論電容值幾乎為graphite的10倍之多,這成功吸引了無數人的投入和研究。但使用Si當陽極材料時將會遇到充放電體積變化率過大的問題 (最高可到達270%),這讓它商業化使用具有相當的困難度。
在改進Si的缺點上,大部分人朝向的方向為改變Si的結構,例如使用active/active, active/inactive, 1-D nanowire, porous thin film等,在裡面表現最好的為1-D nanowire和thin film,但其克電容值 (mAh/g)雖然高,總電容值 (mAh)卻相當有限,加上製程上昂貴的缺點,讓它們不太可能被拿來實際應用。而近年來發現除了可以藉由改變Si結構的方法外,改變高分子黏著劑 (binder)或是改變導電碳材 (carbon additives)也是可行之道,不過整體來說研究的人仍為少數,可以改進的點也還相當多。
傳統或是負極材料上會使用Polyvinylidene fluoride(PVdF)當做binder,但用在Si系統中將會遇到黏著力 (adhesive strength)不足.吸收大量電解液以及會自我交纏 (entanglement)等的問題。隨著高分子科學的發展,binder的知識和發展也跟著進步,現今已發現adhesive strength在所有參數中為其最主要的關鍵,而以現有最好可商業化得到的binde─聚丙烯酸 (polyacylic acid, PAA)來說,大部分PVdF會遇到的問題都可成功被改善,而其具有COOH官能機可大大增加adhesive strength和會形成可隔離電解液的有效阻隔層(artificial SEI)讓它比起其他競爭者具有相當大的優勢。但因為其效果太好,以及結構上難以被改值置換的特點,新一代的binder遲遲無法被發現進而使用,所以我們在實驗中換了個角度來增進我們電池的壽命,那就是改進carbon additives,原本的carbon additives只負責導電的效果,而我們將多壁碳管 (MWNTs)和graphite進行酸化,這個過程會讓carbon additives上多了非常非常多的COOH關能基,因此大大的增加adhesive strength進而成功再增加電池的壽命。
所以本實驗將關注在兩個方面,一者為從幾個方面去探討PAA在鋰電池裡的最佳化使用,以及研究不同carbon additives間所造成的不同結果。
1. B.L. Cushing, J.B. Goodenough , Solid State Sci. 2002, 4, 1487.
2. T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, J. Electrochem. Soc., 2004, 151, A1120.
3. A.N. Dey, J. Electrochem. Soc. 1971, 118, 1547.
4. T.D. Hatchard, J.R. Dahn, J. Electrochem. Soc. 2004, 151(6), A838–A842.
5. K. Hyesun, C. Jaephil, 2008, Nano Lett., Vol. 8, No. 11
6. P.P. Ferguson, M.L. Martine, A.E. George, and J.R. Dahn, 2009, Journal of Power Sources 194, 794–800.
7. G. Jeong, S.M. Lee, N.S. Choi, Y.U. Kim, and C.K. Lee, Electrochimica Acta , 2011, 56 ,5095–5101.
8. J. Li, L. Christensen, M.N. Obrovac, K.C. Hewitt, and J.R. Dahn, Journal of The Electrochemical Society, 2008, 155, 3, A234-A238.
9. Z. Chen, L. Christensen, andJ.R. Dahn, Electrochemistry Communications, 2003, 5, 919–923.
10. W.R. Liu, M.H. Yang, H.C. Wu, S.M. Chiao, and N.L. Wu, Electrochemical and Solid-State Letters, 2005, 8 , 2, A100-A103.
11. J. Li, R.B. Lewis, and J.R. Dahn, Electrochemical and Solid-State Letters, 2007, 10, 2, A17-A20.
12. S.D. Beattie, D. Larcher, M. Morcrette, B. Simon, and J.M. Tarascon, Journal of The Electrochemical Society, 2008, 155, 2, A158-A163.
13. N.S. Hochgatterer, M.R. Schweiger, S. Koller, P.R. Raimann, T. Wöhrle, C. Wurm, and M. Winter, Electrochemical and Solid-State Letters,2008, 11, 5, A76-A80.
14. R.R. Garsuch, D.B. Le, A. Garsuch, J. Li, S. Wang, A. Farooq, and J.R. Dahn, Journal of The Electrochemical Society, 2008, 155, 10, A721-A724.
15. J.Guo, A. Sun, X. Chen, C. Wang, A. Manivannan, Electrochimica Acta, 2011, 56, 3981–3987.
16. B. Lestriez, S. Desaever, J. Danet, P. Moreau, D. Plée, and D. Guyomard, Electrochemical and Solid-State Letters, 2009, 12, 4, A76-A80.
17. J. Li, D.B. Le, P.P. Ferguson, and J.R. Dahn, Electrochimica Acta, 2010, 55, 2991–2995.
18. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller,| I. Luzinov, and G. Yushin, Applied Materials and Interfaces, 2010, vol 2, no, 11, 3004-3010.
19. N. Yabuuchi, K. Shimomura, Y. Shimbe, T. Ozeki, J.Y. Son, H. Oji, Y. Katayama, T. Miura, and S. Komaba, Adv. Energy Mater. 2011, 1, 759–765.
20. S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, Journal of Physical Chemistry, 2011, 115, 13487-1345.
21. S. Komaba, N. Yabuuchi, T. Ozeki, Z.J. Han, K. Shimomura, H. Yui, Y. Katayama, and T. Miura, Journal of Physical Chemistry, 2012, 116, 1380-1389.
22. D. Mazouzi, B. Lestriez, L. Roué, and D. Guyomard, Electrochemical and Solid-State Letters, 2009, 12, 11, A215-A218.
23. Y.S. Yoon, S.H. Jee, S.H. Lee, and S.C. Nam, Surface & Coatings Technology 2011, 206, 553–558.
24. Y. Sun, X.Y. Feng, C.H. Chen, Journal of Power Sources, 2011, 196, 784–787.
25. J.Y. Xiang, X.L. Wang, J. Zhong, D. Zhang, J.P. Tu, Journal of Power Sources, 2011, 196, 379–385.
26. X.J. Zhu, Z. P. Guo, P. Zhang, G.D. Du, R. Zeng, Z.X. Chen, S. Li, and H.K. Liu, J. Mater. Chem., 2009, 19, 8360–8365.
27. L.F. Cui, R. Ruffo, C.K. Chan, H. Peng, and Yi Cui, Nano Letters, 2009, Vol 9, No 1, 491-495.
28. L.F. Cui, Y. Yang, C.M. Hsu, and Y. Cui, Nano Letters, 2009, Vol 9, No, 9, 3370-3374.
29. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Polymer, 2011, 52, 5-25.
30. X. Yu, R. Rajamani, K.A. Stelson, T. Cui, Surface & Coatings Technology, 2008, 202 2002–2007.