簡易檢索 / 詳目顯示

研究生: 詹叡棋
Jui-Chi, Chan
論文名稱: 在超/次臨界流體下Tetralin之氫化反應
Hydrogenation of Tetralin in Supercritical and Subcritical Fluid
指導教授: 談駿嵩
Chun-Sung, Tan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: 氫化反應四氫□滴流反應器超臨界流體質傳現象
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫化反應之過程中,由於氫氣在有機溶液中之溶解度不高,反應速率往往受制於氣液介面間之質傳阻力。此外在使用多孔性觸媒時,觸媒內部之擴散阻力也會對反應速率造成限制,若處理具高黏度液體,則質傳阻力之影響將更增加。因此傳統上在氫化反應製程中,常利用滴流反應器(Trickle-Bed Reactor)增加介面質傳速率以獲得高反應量。然而受制於氫氣溶解度,也只能藉由增加壓力以增加液相中氫氣濃度,或增加反應物之停滯時間,以更增進反應器之效能。
    為更能有效提升反應速率,本研究就不同之操作方式針對四氫□(Tetralin)之氫化反應進行探討,其中反應之主要產物為順式十氫□(cis-Decalin)。實驗在一填充0.5 wt % Pt/γ-Al2O3觸媒之固定床反應器內,分別於以下三種不同之操作方式進行實驗:【操作1】氣液流動相,即傳統滴流反應器之操作;【操作2】單一超臨界流體流動相;【操作3】氣液流動相,但氣相中帶有高壓之二氧化碳。
    由實驗結果得到在【操作3】時可獲得最高之cis-Decalin選擇率及產率,其原因為當液相中若存有高壓之二氧化碳時,將會使液體之體積膨脹,造成其黏度降低並使氫氣於液相中之溶解度上升,進而減少介面及觸媒內部之質傳阻力並提升反應速率。此外當液相中之質傳速率提昇時,產物將能有效離開觸媒內部活性點,減少其進一步產生異構化反應之機會,因能得到較高之cis-Decalin選擇率。
    在本研究中並於Liquid-Full操作之下進行存在高壓二氧化碳時之氫化反應,分別於不同之液相流速及觸媒粒徑下反應,用以觀察固液介面及觸媒內部質傳阻力對反應速率之效應,以及存在高壓二氧化碳對於質傳阻力之影響。並在可忽略氣液介面、液固介面及觸媒內部質傳阻力之操作範圍下於改變氫氣濃度進行反應,藉以獲得此反應之反應動力式。


    摘要 I 目錄 III 圖目錄 V 表面錄 VI 壹、緒論 1 貳、文獻回顧 3 2-1 TETRALIN氫化之文獻 3 2-2 以超臨界流體為載體進行化學反應之文獻 6 2-3 存在高壓二氧化碳時進行化學反應之文獻 10 參、實驗部份 12 3-1 實驗裝置與步驟 12 3-1-1觸媒製備與前處理 12 3-1-2氫化反應實驗 13 3-1-3動力式量度實驗 14 3-2實驗藥品 18 3-3 實驗儀器 19 肆、結果與討論 22 4-1 不同操作方式對氫化反應之影響 22 4-1-1 【操作一】傳統滴流反應器 23 4-1-1-1 液相濃度效應 23 4-1-1-2 壓力效應 25 4-1-1-3 溫度效應 27 4-1-2 【操作二】單一超臨界相操作 29 4-1-3 【操作三】存在高壓二氧化碳下操作 31 4-1-3-1 二氧化碳濃度效應 31 4-1-3-2 壓力效應 33 4-1-3-3 溫度效應 35 4-1-3-4 液相濃度效應 37 4-2 反應動力式之量度 39 4-2-1 不含二氧化碳之實驗 40 4-2-1-1 液相流速效應 40 4-2-1-2 觸媒尺寸效應 41 4-2-2 存在高壓二氧化碳之實驗 42 4-2-2-1 二氧化碳濃度效應 42 4-2-2-2 液相流速效應 43 4-2-2-3 觸媒尺寸效應 45 4-2-2-4 壓力效應 47 4-2-2-5 動力式量度 48 伍、結論 51 陸、參考文獻 52

    (1) Cooper, B. H.; Donnis, B. B. L. “Aromatic saturation of distillates: An overview” Appl. Catal. A, 1996, 137, 203-223.
    (2) Satterfield, C. N. “Trickle-Bed Reactors” AIChE J. 1975, 21, 209-228.
    (3) Herskowitz, M.; Smith, J. M. “Trickle-Bed Reactors: A Review” AIChE J. 1983, 29, 1-18.
    (4) Weitkamp, A. W. “Deuteriation and Deuterogenation of Naphthalene and Two Octalins” J. Catal., 1966, 6, 431-457.
    (5) Girgis, M. J.; Gates, B. C. “Reactivities, Reaction Networks, and Kinetics in High-Pressure Catalytic Hydroprocessing” Ind. Eng. Chem. Res., 1991, 30, 2021-2053.
    (6) Lin, S. D.; Song, C. “Noble Metal Catalysts for Low-Temperature Naphthalene Hydrogenation in the Presence of Benzothiophene” Catal. Today, 1996, 31, 93-104.
    (7) Girgis, M. J.; Gates, B. C. “Reactivities, Reaction Networks, and Kinetics in High-Pressure Catalytic Hydroprocessing” Ind. Eng. Chem. Res. 1991, 30, 2021-2058.
    (8) Song, C.; Eser, S.; Schobert, H. H.; Hatcher, P. G. “Pyrolytic Degradation Studies of a Coal-Derived and a Petroleum-Derived Aviation Jet Fuel” Energy & Fuels, 1993, 7, 234-243.
    (9) Schmitz, A. D.; Bowers, G.; Song, C. “Shape-Selective Hydrogenation of Naphthalene over Zeolite-Supported Pt and Pd Catalysts” Catal. Today, 1996, 31, 45-56.
    (10) Huang, T. C.; Kang, B. C. “Hydrogenation of Naphthalene with Platinum-Aluminium Borate Catalysts” Chem. Eng. J. 1996, 63, 27-36.
    (11) Huang, T. C.; Kang, B. C. “Kinetic Study of Naphthalene Hydrogenation over Pt/Al2O3 Catalyst” Ind. Eng. Chem. Res., 1995, 34, 1140-1148.
    (12) Huang, T. C.; Kang, B. C. “Naphthalene Hydrogenation over Pt/Al2O3 Catalyst in a Trickle Bed Reactor” Ind. Eng. Chem. Res., 1995, 34, 2349-2357.
    (13) Rautanen, P. A.; Aittamaa, J. R.; Krause, A. O. I. “Liquid phase hydrogenation of tetralin on Ni/ Al2O3” Chem. Eng. Sci., 2001, 56, 1247-1254.
    (14) Lylykangas, M. S.; Rautanen, P. A.; Krause, A. O. I. “Liquid-Phase Hydrogenation Kinetics of Multicomponent Aromatic Mixtures on Ni/Al2O3”Ind. Eng. Chem. Res., 2002, 41, 5632-5639.
    (15) Qian, W.; Shirai, H.; Ifuku, M.; Kabe, T. “Reactions of Tetralin with Tritiated Molecular Hydrogen on Pt/Al2O3, Pd/Al2O3, and Pt-Pd/Al2O3 Catalysts” Energy & Fuels, 2000, 14, 1205-1211.
    (16) Costa, P. D.; Lemberton, J. L.; Potvin, C.; Manoli, J. M.; Perot, G.; Breysse, M.; Mariadassou, G. D. “Tetralin Hydrogenation Catalyzed by Mo2C/Al2O3 and WC/Al2O3 in the Presence of H2S” Catal. Today, 2001, 65, 195-200.
    (17) Sprague, M. J.; Zheng, J.; Song, C. “Effect of Sulfur Removal from Naphthalene on Its Hydrogenation over Mordenite-Supported Pd Catalyst” Petrol. Chem. Div. Preprints, 2002, 47, 103-105.
    (18) Savage, P. E.; Gopalan, S.; Mizan, T. I.; Martino, C. J.; Brock, E. E. “Reactions at Supercritical Conditions: Applications and Fundamentals” AIChE J., 1995, 41, 1723-1778.
    (19) Baiker, A. “Supercritical Fluids in Heterogeneous Catalysis” Chem. Rev., 1999, 99, 453-474.
    (20) Lang, X.; Akgerman, A.; Bukur, D. B. “Steady State Fisher-Tropsch Synthesis in Supercritical Propane” Ind. Eng. Chem. Res., 1995, 34, 72-77.
    (21) Chandler, K.; Deng, F.; Dillow, A. K.; Liotta, C. L.; Eckert, C. A. “Alkylation Reactions in Near-Critical Water in the Absence of Acid Catalysts” Ind. Eng. Chem. Res., 1997, 36, 5175-5179.
    (22) Hitzler, M. G.; Poliakoff, M. Continuous, “Continuous Hydrogenation of Organic Compounds in Supercritical Fluids” Chem. Commun., 1997, 1667-1668.
    (23) Kuo, T. W.; Tan, C. S. “Alkylation of Toluene with Propylene in Supercritical Carbon Dioxide over Chemical Liquid Deposition HZSM-5 Pellets” Ind. Eng. Chem. Res. 2001, 40, 4724-4730.
    (24) Chiang, T. C.; Chan, J. C.; Tan, C. S. “Alkylation of Toluene with Isopropanol over CLD Modified HZSM-5 under Atmospheric and Supercritical Operations” Ind. Eng. Chem. Res. 2003, 42, 1334-1340.
    (25) Devetta, L.; Giovanzana, A.; Canu, P.; Bertucco, A.; Minder, B. J. “Kinetic Experiments and Modeling of a Three-Phase Catalytic Hydrogenation Reaction in Supercritical CO2” Catal. Today 1999, 48, 337-345.
    (26) Harrod, M.; Macher, M. B.; van den Hark. S.; Moller, P. “Hydrogenation at Supercritical Conditions. In Proceedings of the Fifth Italian Conference on Supercritical Fluids and Their Applications (CISF 99); Aarda (Verona), Italy, June 13-16, 1999; Universita di Padova; Garda (Verona), Italy, 1999; p 319.
    (27) Poliakoff, M.; Meehan, N. J.; Ross, S. K. “S Supercritical Success Story” Chem. Ind. 1999, 750-754.
    (28) Phiong, H. S.; Lucien, F. P.; Adesina, A. A. “Three-Phase Catalytic Hydrogenation of α-Methylstyrene in Supercritical Carbon Dioxide” J. Supercrit. Fluids, 2003, 25, 155-164.
    (29) Chouchi, D.; Gourgouillon, D.; Courel, M.; Vital, J.; Ponte, M. N. “The Influence of Phase Behavior on Reactions at Supercritical Conditions: The Hydrogenation of α-Pinene” Ind. Eng. Chem. Res., 2001, 40, 2551-2554.
    (30) Combes, G. B.; Dehghani, F.; Lucien, F. P.; Dillow, A. K.; Foster, N. R. “Asymmetric Catalytic Hydrogenation in CO2 Expanded Methanol – An Application of Gas Anti-solvent Reactions (GASR)” React. Eng. Pollut. Prev., 2000, 173-181.
    (31) Warwick, B.; Dehghani, F.; Foster, N. R.; Biffin, J. R.; Regtop, G. C. “Synthesis, Purification, and Micronization of Pharmaceuticals Using the Gas Antisolvent Technique” Ind. Eng. Chem. Res., 2000, 39, 4571-4579.
    (32) Levec, J.; Smith, J. M., “Oxidation Of Acetic Acid Solutions in a Trickle-Bed Reactor” AIChE J., 1976, 22, 159-168.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE