簡易檢索 / 詳目顯示

研究生: 蘇柏文
論文名稱: Fe及In元素添加對Bi2Te3化合物微結構及熱電性質影響
Effect of Fe and In addition on the microstructure and thermoelectric properties of Bi2Te3 compounds
指導教授: 廖建能
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 熱電材料碲化鉍
外文關鍵詞: Thermoelectrics, Bi2Te3, In2Te3, FeTe2
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bi2Te3化合物是室溫下性質最突出的熱電材料,為具有凡得瓦爾鍵的層狀結構。本實驗分別將FeTe2及In2Te3兩種化合物,添加在Bi2Te3化合物中,欲觀察FeTe2及In2Te3分相的微結構,以及它們對熱電性質的影響。實驗結果顯示,固化時FeTe2在Bi2Te3中呈長條狀析出,長條析出物的間距約一微米。經過計算,發現析出相本身對Bi2Te3母相散射機制的影響微小,反而是少量的溶解在Bi2Te3晶體中的Fe元素,會造成載子濃度的變化,影響材料的熱電性質。整體而言,FeTe2的加入使Bi2Te3化合物的電阻率上升, Seebeck係數卻沒有提升,最大功率因子只有1.2*10-3 W/m-K2,表現比不上一般Bi2Te3系列合金材料。而添加In2Te3方面,參考相圖資料,Bi2-xInxTe3合金所配製的成分是落在靠近Bi2Te3側的固溶區內,經過適當的退火處理,可使In2Te3進行固態的析出反應。然而實驗結果卻發現,經過各種溫度退火處理,大部分的In元素仍固溶在Bi2Te3晶體中無法析出。固溶在晶體中的In元素導致Bi2Te3導電載子由p型轉為n型,Seebeck係數及電導皆下降。


    Bi2Te3 is the most outstanding thermoelectric material near room temperature region. It has a laminar crystal structure with van der waals bonding in it. In this study, FeTe2 and In2Te3 were alloyed with Bi2Te3 respectively to investigate their microstructures and thermoelectric properties. For the FeTe2-Bi2Te3 system, the strip-like FeTe2 phase was found to segregate upon solidification and apart from each other by 1 □m approximately. According to theoretical calculation, it is found that the segregations have little influence on the scattering mechanism of charge carriers. Instead, Fe atoms which dissolved in Bi2Te3 lattice may change the carrier concentrations and thermoelectric properties of the alloys. The Seebeck coefficient and electrical resistivity of Bi2Te3 will decrease with the addition of FeTe2, leading to a lower power factor. For In2Te3-Bi2Te3 system, most of the indium atoms are still dissolved in Bi2Te3 crystal lattice which is not consistent with the equilibrium phase diagram published. The dissolution of indium results in the decrease in Seebeck coefficient and electrical conductivity of the alloys. The hole conduction is also found to change into electron conduction at a very high level of indium addition.

    目錄 I 圖目錄 III 表目錄 VI 第一章、 緒論 1 1.1 熱電材料簡介 1 1.2實驗動機與目的 2 第二章、 文獻回顧 4 2.1 矛盾 4 2.2 Bi2Te3化合物半導體材料介紹 7 2.3 熱電材料研究的現狀 8 2.4 量子效應 9 2.5 超晶格薄膜 10 2.6 第二相對材料熱、電性質的影響 16 第三章、 實驗規劃 21 3.1 實驗規畫與應用原理 21 3.1.1 Fe元素添加系統 21 3.1.2 In元素添加系統 27 3.1.3 簡述:插層法 32 3.2 實驗設備與儀器 35 3.3 實驗方法 36 第四章、 結果與討論 38 4.1 Fe元素添加系統 38 4.1.1 X光繞射分析 38 4.1.2 微結構 39 4.1.3 熱電性質 45 4.1.4 散射機制 50 4.2 In元素添加系統 51 4.2.1 X光繞射、及SEM微結構分析 53 4.2.2 熱電性質 57 4.2.3 溶解度 61 第五章、 結論 62

    [1] J.P. Fleurial, G.J. Snyder, J. Patel, J.A. Herman, T. Caillat, B. Nesmith and E.A. Kolawa. Space Technology and Applications International Forum Proceedings, Albuquerque, New Mexico, January 2000
    [2] D. M. Rowe. “Thermoelectrics Handbook : Macro to Nano”. P.1-7. CRC Press. Boca Raton, 1995.
    [3] D. Tuomi, J. Electrochem. Soc. 131 (1984) 2101
    [4] G. A. Slack. solid state physics vol.34 1979, Academic Press, New York
    [5] J. M. Worlock. Physical Review 147 (1966) 636
    [6] D. H. Kim, Tadaoki Mitani. Journal of Alloys and Compounds 339 (2005) 14-19
    [7] F. D. Rosi, E. F. Hockings and N. E. Lindenblad. RCA Rev. 22 (1961) 82
    [8] H. Köhler. Physica status solidi (b) 73 (1976) 95
    [9] G.S. Nolas, J. Sharp & H.J. Goldsmid. “Thermoelectrics - Basic Principles and New Materials Developments”. Springer.
    [10] D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, Uher, M. G. Kanatzidis. Science 287 (2000) 1024
    [11] G. Ch. Christakudis, S. K. Plachkova, L. E. Shelimova. Physica status solidi (a) 102 (1987) 357
    [12] G. Ch. Christakudis, S. K. Plachkova, L. E. Shelimova, E. S. Avilov. Physica status solidi (a) 128 (1991) 465
    [13] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, Science 303 (2004) 818
    [14] B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson. PHYSICAL REVIEW B 56 (1997) 15081
    [15] L. D. Hicks, M. S. Dresselhaus. Physical Review B 47 (1993) 12727
    [16] D. A. Broido, T. L. Reinecke. Physical Review B 51 (1995) 13797
    [17] C. Jacoboni, C. Canali, G. Ottaviani and A. Alberigi Quaranta. Solid State Electron. 20 (1977) 77-89
    [18] R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann. Appl. Phys. Lett. 33 (1978) 665
    [19] T. Yao. Appl. Phys. Lett. 51 (1987) 1799
    [20] S. Y. Ren, J. D. Dow. Physical Review B 25 (1982) 3750
    [21] S. M. Lee, D. G. Cahill, R. Venkatasubramanian. Appl. Phys. Lett. 70 22 (1997)
    [22] G. Chen and M. Neagu. Appl. Phys. Lett. 71 19 (1997)
    [23] L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus. Physical Review B 53 (1996) 10493
    [24] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn. Nature 413 (2001) 597
    [25] J. C. Caylor, K. Coonley, J. Stuart, T. Colpitts, and R. Venkatasubramanian. Appl. Phys. Lett. 87 (2005) 023105
    [26] K. Kishimoto, M. Tsukamoto, and T. Koyanagi. J. Appl. Phys. 92 9 (2002)
    [27] K. Kishimoto and T. Koyanagi. J. Appl. Phys. 92 5 (2002)
    [28] J. Phys. : Condens. Matter 17 (2005) 7319
    [29] W. Koster and F. Braumann, Z. Metallk. 43 193 (1952)
    [30] G. T. Murray and W. E. Taylor, Acta Met. 2 52 (1954)
    [31] J. M. Worlock, Physical Review 147 (1966) 636
    [32] E. Benavente, M.A. Santa Ana, F. Mendiza'bal, G. Gonza'lez. Coordination Chemistry Reviews 224 (2002) 87
    [33] Editor-in-chief, T. B. Massalski; Editors, H. Okamoto, P.R. Subramanian, L. Kacprzak. “Binary alloy phase diagrams”. 2nd ed. Materials Park, Ohio :ASM International,c1990.
    [34] P. Villars & A. Prince & H. Okamoto. “Handbook of ternary alloy phase diagrams”. vol.4 p.4289. ASM International Society (1995)
    [35] N. Guettari, C. Amory, M. Morsli, J. C. Bernède and A. Khelil. Thin Solid Films 431–432 (2003) 497–501
    [36] S. Sen and D. N. Bose. Solid-State Electronics 26 (1983) 757
    [37] S. Pal and D. N. Bose. Solid State Communications 97 (1996) 725
    [38] T. Harada. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 67 (1998) 1352
    [39] E.G. Lavut, N. V. Chelovskaya, G. A. Belysheva, V. N. Demin, V. P. Zlomanov. Journal of Chemical Thermodynamics 29 (1997) 43
    [40] E.G. Lavut, N.V. Chelovskaya, G.A. Belysheva, V.N. Demin and V.P. Zlomanov. J. Chem. Thermodynamics 26 (1994) 577
    [41] R. E. Reed-Hill, R. Abbaschian. "Physical metallurgy principles". 3rd ed. P.493. Boston :PWS-Kent Pub. c1992
    [42] H. Zabel S. A. Solin. “Graphite intercalation Compounds I - Structure and Dynamics”. p.64. Springer-Verlag
    [43] C. Klein, C. S. Hurlbut, Jr. “Manual of Mineralogy” P.525. 中文譯本:”礦物學” 黃怡禎譯 地球科學文教基金會發行
    [44] L. JANSA, P. LOŠŤÁK, J. ŠRÁMKOVÁ, J. HORÁK. Journal of Materials Science 27 (1992) 6062.
    [45] S. Karamazov, P. Lostak, J. Horak, R. Kuzel. Phys. stat. sol. (a) 148 (1995) 229
    [46] J. Horák, P. Lošt’ák, Č. Drašar, J. Navrátil and C. Uher. Journal of Solid State Chemistry 180 (2007) 915
    [47] V.A. Kulbachinskiia, A.Yu. Kaminskiia, K. Kindo, Y. Narumi, K. Suga, P. Lostak, P. Svanda. Physica B 311 (2002) 292

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE