簡易檢索 / 詳目顯示

研究生: 鐘金峰
Chin-Feng Chung
論文名稱: 化學液相法製備BiFeO3氧化物薄膜
Preparation of BiFeO3 thin films by chemical solution deposition method
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 136
中文關鍵詞: 複鐵式鐵電性磁電鐵酸鉍
外文關鍵詞: Multiferroic, Ferroelectric, Magnetoelectric, Bismuth Ferrite
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (BiFeO3,BFO)薄膜是目前很熱門的研究。但不幸地,受限於材料的漏電流太大,還無法在鐵電的應用上受到重視,文獻中提供了目前很多研究的方向,本論文是利用化學液相沈積法(chemical solution deposition,CSD)旋鍍鐵酸鉍氧化物(BFO)薄膜,文中探討分別藉由摻雜三價錳(Mn)離子和五價鈮(Nb)離子去取代BFO薄膜中部分三價鐵離子、藉由不同價數的取代去改善BFO薄膜的性質。本文分成四個方面來論述,首先,如何在Pt/Ti/SiO2/Si基板上製備BFO薄膜藉由改變不同熱處理溫度來探討其結構上和電性方面的影響,第二部分摻雜不同比例的三價錳離子取代鐵離子,在BiFe1-xMnxO3薄膜中分別取x=0.02、0.05、0.1成分和純BFO薄膜相互比較其在不同溫度熱處理下的電性影響,第三部分藉由高價的鈮(Nb)離子去取代BFO薄膜中的5%鐵離子形成BiFe0.95Mn0.05O3薄膜,在相同摻雜量的情形下,去比較不同離子在BFO薄膜的影響。最後利用射頻磁控濺鍍法在Pt基板上鍍覆LaNiO3(LNO)緩衝層,希望藉由LNO來降低結晶溫度,幫助BFO薄膜成相,同時探討BFO結晶程度對鐵電薄膜性質的影響。最後除了利用溶液法製備出優良的BFO薄膜外,對薄膜的各項特性進行分析,包括XRD結構鑑定、SEM表面微結構分析、電特性分析、磁特性等等。
    透過CSD製備的BFO薄膜,在氧氣氛下經過500oC熱處理可以的到最佳的漏電流密度(約10-6A/cm2於電場70kV/cm),透過添加錳(Mn)離子,隨著錳離子的摻雜量越多,漏電流遽增,介電常數增加。隨著BFO薄膜熱處理溫度的上升,添加鈮(Nb)離子可以改善漏電流密度,有別於純BFO薄膜,高價離子的添加幫助BFO薄膜減少氧空缺,使得漏電流較穩定。在室溫下,BFO薄膜的磁滯曲線,可藉由鈮(Nb)離子摻雜得到鐵磁特性。最後LNO緩衝層的存在,造成薄膜晶粒縮小,微觀結構更加緻密,減少與基板的直接反應,對於薄膜電性有增進的效果,另外還可以降低熱處理的結晶溫度,使其低溫下具有較好的電性。


    The BiFeO3 (BFO) thin films have been recognized as the potential dielectric materials of DRAM. Unfortunately, the leakage current is too large for apply. There are three works in my researches, the first of this work added the Mn content to the multi-doped BiFeO3 to form three kinds of compositions with different Mn ratios of 0, 2%, 5%, and 10%. The purpose of this work is to reduce the leakage current of BFO thin films with high permittivity by spin coating. The research of Mn-added multi-doped BiFeO3 thin films was focused on the XRD structure analysis, microstructure, and dielectric and electric properties and magnetic properties. The Mn-added multi-doped were prepared for studying the effect of annealing temperature on dielectric properties and resistivity. Second, I doped high value ions Nb to reduce the leakage current of BFO films on Pt substrate, realized difference of different ions doped in BFO films. Finally I change different substrates to improve BFO properties Using LaNiO3 substrate to help BFO transform perovskite phase and lower crystalline temperature.

    摘要.......................................................I 目錄.....................................................III 表目錄..................................................VIII 圖目錄....................................................IX 第一章 前言..............................................1 1.1 簡介...............................................1 1.2 研究動機 ..........................................2 第二章 文獻回顧..........................................4 2.1 簡介複鐵式材料(Multi-ferro Materials)............4 2.1.1 鐵電性質......................................4 2.1.2 複鐵式性質(Multi-ferro properties)..........7 2.1.3 複鐵式材料(Multi-ferro materials)..........11 2.2 鐵酸鉍的特性(BiFeO3)............................13 2.2.1 晶格結構.....................................13 2.2.2 優點.........................................14 2.2.3 缺點.........................................15 2.3 BFO薄膜的製作與發展...............................16 2.4 介電性質..........................................19 2.4.1 極化機制(Polarization Mechanisms)..........19 2.4.2 介電常數和散逸因子...........................20 2.4.3 介電崩潰機制.................................21 2.4.4 漏電流機制...................................21 2.4.5 電極.........................................23 2.5 化學溶液沈積法 (CSD) .............................24 第三章 實驗方法.........................................34 3.1 實驗流程 .........................................34 3.1.1 基板之準備...................................34 3.1.2 Bi1.05FeO3(BFO)溶液的製備....................35 3.1.3 薄膜的旋鍍及熱處理...........................36 3.1.4 上電極的鍍製.................................37 3.2 實驗量測..........................................38 3.2.1 晶相結構.....................................38 3.2.2 薄膜厚度和表面結構...........................38 3.2.3 化學鍵結分析.................................38 3.2.4 薄膜成分縱深分析.............................39 3.2.5 介電常數及散逸因子...........................39 3.2.6 外加電場(E)對薄膜內部電流密度(J)之影響.......39 3.2.7 P-E 電滯曲線.................................40 3.2.8 M-H 磁滯曲線.................................40 第四章 結果討論.........................................47 4.1 BiFeO3/Pt 之薄膜性質..............................47 4.1.1 晶體結構.....................................47 4.1.2 微觀結構.....................................48 4.1.3 化學鍵結.....................................48 4.1.4 薄膜成分縱深分析.............................49 4.1.5 介電常數及散逸因子...........................49 4.1.6 漏電流性質...................................50 4.1.7 鐵電性.......................................51 4.1.8 磁滯曲線.....................................52 4.2 不同錳摻雜量對於BFO的影響.........................52 4.2.1 晶體結構.....................................53 4.2.2 微觀結構.....................................53 4.2.3 化學鍵結.....................................54 4.2.4 介電常數及散逸因子...........................55 4.2.5 漏電流性質...................................56 4.2.6 鐵電性.......................................56 4.2.7 磁滯曲線.....................................56 4.3 不同摻雜離子對於BFO的影響.........................57 4.3.1 晶體結構.....................................57 4.3.2 微觀結構.....................................57 4.3.3 化學鍵結.....................................58 4.3.4 介電常數及散逸因子...........................58 4.3.5 漏電流性質...................................59 4.3.6 鐵電性.......................................60 4.3.7 磁滯曲線.....................................61 4.4 LNO緩衝層對於BFO的影響............................61 4.4.1 晶體結構.....................................61 4.4.2 微觀結構.....................................62 4.4.3 薄膜成分縱深分析.............................62 4.4.4 介電常數及散逸因子...........................62 4.4.5 漏電流性質...................................63 4.4.6 鐵電性.......................................64 4.4.7 磁滯曲線.....................................64 第五章 結論.............................................65 第六章 參考文獻........................................120 附錄............................................135

    [1] M. Lines and A. Glass, Principles and Applications of Ferroelectrics
    and Related Devices, Clarendon Press, Oxford, 87 (1977)
    [2] W. J. Merz, Phys. Rev. 76, 1221 (1949)
    [3] S. Hoshino, Y. Mitsui, F. Jona, and R. Pepinsky, Phys. Rev., 107, 1255 (1957)
    [4] B. Jaffe, W. R. Cooke Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press,New York, 1971)
    [5] E. G. Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes, “Influence of Zr/Ti ratios on the deformation in the hysteresis loop of Pb(Zr,Ti)O3 thin film capacitors” Appl. Phys. Lett. 70, 2404 (1997)
    [6] C. S. Liang, J. M. Wu, and M. C. Chang, “Ferroelectric
    BaPbO3/PbZr0.53Ti0.47/BaPbO3 heterostructures” Appl. Phys. Lett. 81, 3624 (2002)
    [7] S. G. Yoon, A. I. Kingon, and S. H. Kim, “Relaxation and leakage current characteristics of Pb1–xLax(ZryTi1–y)1–x/4O3 thin films with various Ir-based top electrodes” J. Appl. Phys. 88, 6690 (2000)
    [8] S. Y. Chen, C. L. Sun, “Ferroelectric characteristics of oriented Pb(Zr1–xTix)O3 films” J. Appl. Phys. 90, 2970 (2001)
    [9] K. Maki, B. T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T.
    Nakamura, and H. Takasu, “Controlling crystallization of Pb(Zr,Ti)O3 thin films on IrO2 electrodes at low temperature through interface engineering” Appl. Phys. Lett. 82, 1263 (2003)
    [10] Z. Huang, Q. Zhang, and R. W. Whatmore, “Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method” J. Appl. Phys. 85 , 7355 (1999)
    [11] J.F. Scott, C.A. Araujo, B.M. Melnick, L.D. McMillan, R. Zuleeg, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories” J. Appl. Phys. 70 , 382 (1991)
    [12] M. Dawber, J.F. Scott, “A model for fatigue in ferroelectric perovskite thin films” Appl. Phys. Lett. 76, 1060 (2000)
    [13] K. Takemura, T. Sakuma and Y. Miyasaka, “High dielectric constant (Ba,Sr)TiO3 thin films prepared on RuO2/sapphire” Appl. Phys. Lett. 64, 2967 (1994)
    [14] G. J. Norga, Laura Fe`, D. J. Wouters, and H. E. Maes, “Effect of RuO2 growth temperature on ferroelectric properties of RuO2/Pb(Zr, Ti)O3/RuO2/Pt capacitors” Appl. Phys. Lett. 76, 1318 (2000)
    [15] T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu, “Electrical Properties of Pb(Zr,Ti)O 3 Thin Film Capacitors on Pt and Ir Electrodes “ Jpn. J. Appl. Phys. 34, 5184 (1995)
    [16] K. B. Lee, B. R. Rhee, and C. K. Lee, “Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers” Appl. Phys. Lett. 79, 821 (2001)
    [17] Y. C. Chen, Y. M. Sun, and J. Y. Gan, “Improved fatigue properties of lead zirconate titanate films made on oxygen-implanted platinum electrodes” Thin solid films 460, 25 (2004)
    [18] M. S. Chen, T.B. Wu, J.M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films” Appl. Phys. Lett. 68, 1430 (1996)
    [19] G. S. Wang, X. J. Meng, J. L. Sun, Z. Q. Lai, J. Yu, S. L. Guo, J. G. Cheng, J.Tang, and J. H. Chu, “PbZr0.5Ti0.5O3/La0.5Sr0.5CoO3 heterostructures prepared by chemical solution routes on silicon with no fatigue polarization” Appl. Phys. Lett. 79, 3476 (2001)
    [20] R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/ La0.5Sr0.5CoO3 ferroelectric capacitors on platinized silicon with no polarization fatigue” Appl. Phys. Lett. 64,2673 (1994)
    [21] H. D. Bhatt, S. B. Desu, D. P. Vijay, Y. S. Hwang, X. Zhang, and M. Nagata,and A.Grill, “Novel high temperature multilayer electrode-barrier structure for high-density ferroelectric memories” Appl. Phys. Lett. 71, 719 (1997)
    [22] G.Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, " Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides" Phys. Rev. B 65, 134402 (2002)
    [23] Manfred Fiebig, “Revival of the magnetoelectric effect” J. Phys. D: Appl. Phys. 38, R123 (2005)
    [24] V. J. Folen, G. T. Rado, and E. W. Stalder, " Anisotropy of the magnetoelectric effect in Cr2O3" Phys.Rev. Lett. 6, 607 (1961)
    [25] G. T. Rado, V. J. Folen, " Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains" Phys.Rev. Lett. 7, 310 (1961)
    [26] I. Kornev, M. Bichurin, J. -P. Rivera, S. Gentil, A. G. M. Jansen, H. Schmid, and P. Wyder, " Magnetoelectric properties of LiCoPO4 and LiNiPO4" Phys. Rev. B 62, 12247 (2000)
    [27] J. Van den Boomgaard, D. R. Terrell, and R. A. J. Born, J. Mater. Sci. 9, 1705 (1974)
    [28] J. Van den Boomgaard, A. M. J. G. van Run, and J. van Suchtelen, Ferroelectrics 14, 727 (1976)
    [29] J. Van den Boomgaard and R. A. J. Born, J. Mater. Sci. 13, 1538 (1978)
    [30] G. Liu, C. W. Nan, N. Cai, and Yuanhua Lin, “Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead–zirconate–titanate” J. Appl. Phys, 95, 2660 (2004)
    [31] J. Ryu, S. Priya, A. V. Carazo, and K. Uchino, J. Am. Ceram. Soc. 84, 2905 (2001)
    [32] J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, “Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites” Jpn. J. Appl. Phys., Part 1 40, 4948 (2001)
    [33] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr, Ti)O3 under resonant drive” Appl. Phys. Lett. 83, 4812 (2003)
    [34] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite” Appl. Phys. Lett. 85, 3534 (2004)
    [35] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Circumferentially magnetized and circumferentially polarized magnetostrictive/piezoelectric laminated rings” J. Appl. Phys. 96, 3382 (2004)
    [36] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Voltage gain effect in a ring-type magnetoelectric laminate” Appl. Phys. Lett. 84, 4188 (2004)
    [37] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse-transverse modes” J. Appl. Phys. 95, 2625 (2004)
    [38] C. W. Nan, “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases” Phys. Rev. B 50, 6082 (1994)
    [39] Nicola A. Hill, Alessio Filippetti, “Why are there any magnetic ferroelectrics?” J. Magnetism and Magnetic Materials. 242-245, 976-979 (2002)
    [40] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “ Epitaxial BiFeO3 multiferroic thin film heterostructures ” Science 299, 1719 (2003)
    [41] Manfred Fiebig, “Revival of the magnetoelectric effect” J. Phys. D: Appl. Phys.38, R123 (2005)
    [42] Venevtsev Y N, Gagulin V V and Zhitomirsky I D Ferroelectrics 73 221 (1987)
    [43] Smolenskii G A, Bokov V A, Isupov V A, Krainik N N and Nedlin G H Helv. Phys. Acta 41 1187 (1968)
    [44] Venevtsev Y N and Gagulin V V Ferroelectrics 162 23 (1994)
    [45] Skinner S M IEEE Trans. Parts, Mater. Packaging 6 68 (1970)
    [46] Schmid H Int. J. Magn. 4 337 (1973)
    [47] Aizu K Phys. Rev. B 2 754 (1970)
    [48] Schmid H Ferroelectrics 162 317 (1994)
    [49] Smolenskii G A and Chupis I E Sov. Phys.—Usp. 25 475 (1982)
    [50] Skinner S M IEEE Trans. Parts, Mater. Packaging 6 68 (1970)
    [51] Kubel F and Schmid H Acta Crystallogr. B 46 698 (1990)
    [52] Coeur´e P, Guinet F, Peuzin J C, Buisson G and Bertaut E F Proc. International Meeting on Ferroelectricity (Prague, 1966) (Prague: Institute of Physics of the Czechoslovak Academy of Sciences) (1966)
    [53] Venevtsev Y N, Gagulin V V and Zhitomirsky I D Ferroelectrics 73 221 (1987)
    [54] Ascher E, Schmid H and Tar D Solid State Commun. 2 45 (1964)
    [55] Schmid H, Rieder H and Ascher E Solid State Commun. 3 327 (1965)
    [56] Scott J F Ferroelectrics 24 127 (1980)
    [57] Eibsch¨utz M and Guggenheim H J Solid State Commun. 6 737 (1968)
    [58] F. Kubel and H. Schmid: Acta Crystallogr, Sect. B 46, 698 (1990)
    [59] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures” Science 299, 1719 (2003)
    [60] J. F. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P.
    Pyatakov, A. K. Zvezdin, and D. Viehland, “Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions” Appl. Phys. Lett. 84, 5261 (2004).
    [61] G. A. Smolenskii and I. Chupis: Sov. Phys. Usp. 25, 475 (1982)
    [62] K. Y. Yun, D. Ricinschi, T. Kanashima, M. Noda and M. Okuyama:
    “Giant Ferroelectric Polarization Beyond 150 µC/cm2 in BiFeO3 Thin Film” Jpn. J. Appl. Phys. 43, L647 (2004)
    [63] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu and Z. G.
    Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering” Appl. Phys. Lett. 84 , 1731 (2004)
    [64] B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A.K. Zvezdin, and D. Viehland, “Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order” Phys. Rev. B 69, 064114 (2004)
    [65] Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire, and Judith L. MacManus-Driscoll, “Greatly reduced leakage current and conduction mechanismin aliovalent-ion-doped BiFeO3” Appl. Phys. Lett. 86, 062903 (2005)
    [66] J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970)
    [67] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin,K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures” Science 299, 1719 (2003)
    [68] V. R. Palkar, J. John, and R. Pinto, “Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films” Appl. Phys. Lett. 80, 1628 (2002)
    [69] K. Y. Yun, D. Ricinschi, T. Kanashima, M. Noda and M. Okuyama
    “Giant Ferroelectric Polarization Beyond 150μC/cm2 in BiFeO3 Thin Film” Jpn. J. Appl. Phys. 43 L647 (2004)
    [70] Sushil K. Singh and Hiroshi Ishiwara “Reduced leakage current in BiFeO3 thin films on Si substrates formed by a chemical solution method” Jpn. J. Appl. Phys. 44 L734 (2005)
    [71] Hiroshi Uchida, Risako Ueno, Hiroshi Nakaki, Hiroshi Funakubo and Seiichiro Koda “Ion Modification for improvement of insulating and ferroelectric properties of BiFeO3 thin films fabricated by chemical solution deposition” Jpn. J. Appl. Phys. 44 L561 (2005)
    [72] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo,
    “Lanthanum-substituted bismuth titanate for use in non-volatile memories” Nature (London) 401, 682 (1999)
    [73] T. Kojima, T. Sakai, T. Watanabe, H. Funkubo, K. Saito, M. Osada,
    “Large remanent polarization of ( Bi, Nd )4Ti3O12 epitaxial thin films
    grown by metalorganic chemical vapor deposition” Appl. Phys. Lett. 80, 2746 (2002)
    [74] U. Chon, J. S. Shim, and H. M. Jang., “Ferroelectric properties and crystal structure of praseodymium-modified bismuth titanate” J. Appl. Phys. 93, 4769 (2003)
    [75] A.J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and applications”, p52-55 and p61-62. (1990)
    [76] 李雅明, “固態電子學”, 全華科技 (1995)
    [77] 吳朗, “電子陶瓷-介電”, 全新資訊圖書 (1994)
    [78] 施修正, “利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜的研究” , 清華大學, 博士論文, (1999)
    [79] Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky BarrierEffects in The Electronic Conduction of Sol-Gel derived Lead Zirconate Titanate Thin Film Capacitors”, Journal of Applied Physics, Vol. 84 No. 9 p5005-5011 (1998)
    [80] I. Stolichnov, and A. Tagantsev, “Space-Charge Influenced-Injection Model for Conduction on Pb(Zr xTi1-x)O3 Thin Films”, Journal of Applied Physics, Vol. 84 No. 6 p3216-3225 (1998)
    [81] W. L. Warren, D. Dimos, and R. M. Waser, “Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites”, MRS Bulletin, July p40-45 (1996)
    [82] J. H. Joo, Y. C. Jeon, J. M. Seon, K. Y. Oh, J. S. Roh, and J. J. Kim, “Effects of Post-Annealing on the Conductive Properties of Pt/(Ba, Sr)TiO3/Pt Capacitors for Dynamic Random Access Memory Applications”, Jpn. J. Appl. Phys. Part 1 Vol. 36 No. 7A p4382-4385 (1997)
    [83] J. H. Ahn, G. P. Choi, W. J. Lee, and H. G. Kim, “Pt/RuO2 Hybrid Bottom Electrode and Their Effects on the Electrical Properties of (Ba,Sr)TiO3 Thin Films”, Jpn. J. Appl. Phys. Part 1 Vol. 37 No. 3A p958-962 (1998)
    [84] Y. T. Kim, and C. W. Lee, “Advantages of RuOx Bottom Electrode in the Dielectric and Leakage Characteristics of (Ba,Sr)TiO3 Capacitor”, Jpn. J. Appl. Phys. Part 1 Vol. 35 No. 12A p6153-6156 (1996)
    [85] J. H. Ahn, W. Y. Choi, W. J. Lee, and H. G. Kim, “Annealing of RuO2 and Ru Bottom Electrodes and Its Effects on the Electrical Properties of (Ba,Sr)TiO3 Thin Films”, Jpn. J. Appl. Phys. Part 1 Vol. 37 No. 7 p284-289 (1998)
    [86] D. S. Kil, B. I. Lee and S. K. Joo, “A Study on the Improvement of Charateristics of BST Thin Films Fabricated on Iridium Electrode”, Mat. Res. Soc. Symp. Proc.Vol. 493 p39-44 (1998)
    [87] S. C. Sun and M. S. Tsai, “Effect of Bottom Electrode Materials on the Electrical and Reliability Characteristics of (Ba,Sr)TiO3 Capacitors”, IEDM Tech. Dig. p253-256 (1997)
    [88] M. S. Chen, J. M. Wu, and T. B. Wu, “Effects of (100)-Textured LaNiO3 Electrode on crystallization and Properties of Sol-Gel-Derived Pb(Zr0.53Ti0.47)O3 Thin Films”, J. Appl. Phys. Vol.34 p4870-4875 (1995)
    [89] C. M. Wu, T. J. Hong, and T. B. Wu, “Effects of (100)-Textured LaNiO3 Electrode on the Deposition and Characteristics of PbTiO3 Thin Films Prepared by rf Magnetron Sputtering”, J. Mater. Res. Vol. 12 p2158-2164 (1997)
    [90] T. F. Tseng, C. C. Yang, K. H. Liou, J. M. Wu, and I. N. Lin, “Crystallization Characteristics of LaNiO3 Layers and Their Effect on Pulsed Laser Deposited (Pb1-xLax)(ZryTi1-y)O3 Thin Films”, J. Appl. Phys. Vol. 35 p4743-4749 (1996)
    [91] H. S. Shy and T. B. Wu, “Effects of Bottom Electrode on the Structural and Electrical Characteristics of Barium Titanate Thin Films”, Jpn. J. Appl. Phys. Part1 Vol. 37 No. 7 p4049-4055 (1998)
    [92] H. S. Shy and T. B. Wu, “Structural and Electrical Characteristics of
    Ba(Zr0.12Ti0.88)O3 Thin Films Deposited on LaNiO3 Electrode by RF Magnetron Sputtering”, Jpn. J. Appl. Phys. Part 1 Vol. 37 No. 7 p5638-5644 (1998)
    [93] Robert W. Schwartz “Chemical Solution Deposition of Perovskite Thin Films” Chem. Mater. 9, 2325-2340 (1997)
    [94] Fukushima, J.; Kodaira, K.; Matsushita, T. J. Mater. Sci., 19, 595 (1984)
    [95] Budd, K. D.; Dey, S. K.; Payne, D. A. Brit. Ceram. Soc. Proc. 36, 107 (1985)
    [96] Dey, S. K.; Budd, K. D., Payne, D. A. IEEE Trans. UFFC 35 (1), 80 (1988)
    [97] Coffman, P. K.; Dey, S. K. J. Sol-Gel Sci. Technol. 1, 251 (1994)
    [98] Vest, R. W.; Xu, J. IEEE Trans. UFFC 35, 711 (1988)
    [99] Haertling, G. H. Ferroelectrics 119, 21 (1991)
    [100] Ito, Y.; et al. Int. Ferro. 14, 123 (1997)
    [101] 陳三元, 強介電薄膜之液相化學法製作, 工業材料 108, 100 (1995)
    [102] B. A. Tuttle, and R. W. Schwartz, “Solution deposition of ferroelectric Thin Films”, Mater. Res. Bull. 20, 49 (1996)
    [103] H. Uchida, R. Ueno, H. Nakaki, H. Funakubo, and S. Koda, Jpn. J. Appl. Phys., 44, L561-L563 (2005)
    [104] K. Y. Yun, M. Noda, and M. Okuyama, Appl. Phys. Lett., 83, 3981 (2003)
    [105] A. F. Moreira dos Santos, A.K. Cheetham, W. Tian, X. Pan Y. Jia,
    N. J. Murphy, J. Lettieri, and D. G. Schlom, Appl. Phys. Lett., 84, 91
    (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE