簡易檢索 / 詳目顯示

研究生: 王騰懋
Wang, Teng-Mao
論文名稱: 計算三維氣泡形狀之數值方法研究
A simple numerical method for 3D bubble shapes
指導教授: 李雄略
Lee, Shong-Leih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 32
中文關鍵詞: 三維氣泡 曲率形狀
外文關鍵詞: three-dimension, bubble, curvature, shape
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣泡之生成與脫離在工業上有很重要的應用,但目前尚無解三維
    (非軸對稱)靜態氣泡之文獻公開發表。由於沒有動量方程式可用,計
    算靜態氣泡必須解Young-Laplace equation。本文發展一套計算三維氣
    泡形狀的數值方法,將三維氣泡形狀利用球座標系統表示,並在氣泡
    表面網格點上進行切平面座標轉換,得到局部表面曲率及形狀的關
    係,在已知形狀條件下求得曲率,也可由已知曲率的條件下反求形狀。
    本研究的主要成果有三:
    1. 首度以雙三次函數bi-cubic function 來近似氣泡表面局部區域之形
    狀,算則簡單,精準度高。
    2. 由氣泡表面之曲率值反求氣泡形狀之首篇文獻。
    3. 由Young-Laplace equation 取得之曲率值求解三維氣泡形狀之首篇
    文獻。
    相信本論文所研發之技術,有助於氣泡動力學之發展。


    目 錄 摘要......................................................I 誌謝.................................................... II 目錄................................................... III 圖目錄................................................... V 表目錄.................................................. VI 符號說明............................................... VII 第一章 緒論..............................................1 1.1 前言................................................ 1 1.2 文獻回顧............................................ 1 1.3 研究目的............................................ 3 第二章 理論分析..........................................4 2.1 問題描述............................................ 4 2.2 計算切平面座標的方向餘弦............................ 5 2.3 計算曲率及形狀...................................... 6 第三章 數值方法......................................... 10 3.1 計算自由氣泡的曲率及形狀........................... 10 IV 3.2 計算傾斜管口生成氣泡形狀........................... 12 第四章 結論............................................. 16 參考文獻................................................ 17 附錄A 在空間中求通過三點的圓之切線..................... 19

    參考文獻
    [1] M. van Sint Annaland, N.G. Deen, and J.A.M. Kuipers, 2005,
    “Numerical simulation of gas bubbles behaviour using a
    three-dimensional volume of fluid method,” Chemical Engineering
    Science, 60, pp. 2999-3011.
    [2] M. van Sint Annaland, W. Dijkhuizen, N. G. Deen, and J. A. M.
    Kuipers, 2006, “Numerical Simulation of Behavior of Gas Bubbles
    Using a 3-D Front-Tracking Method,” AIChE J., 52, pp. 99-110.
    [3] E.M. Stokely and S.Y. Wu, 1992, “Surface Parameterization and
    Curvature Measurement of Arbitrary 3-D Objects: Five Practical
    Methods,” IEEE Trans. Part. Anal. Machine Intell., 14, pp. 833-840.
    [4] Alan M., MCIvor , Robert J. Valkenburg, 1997, “A comparison of
    local surface geometry estimation methods,” Machine Vision and
    Applications, 10, pp. 17-26.
    [5] D. Liao, H. Gregersen, T. Hausken, O.H. Gilja, M. Mundt, and G.
    Kassab, 2004, “Analysis of surface geometry of the human stomach
    using real-time 3-D ultrasonography in vivo,” Neurogastroenterol
    Motil, 16, pp. 315-324.
    [6] Donghua Liao, Jingbo Zhao, and Hans Gregersen1, 2005, “Regional
    surface geometry of the rat stomach based on three-dimensional
    curvature analysis,” Phys. Med. Biol., 50, pp. 231-246.
    [7] S. L. Lee, and H. D. Lee, 2007, “Evolution of Liquid Meniscus
    Shape in a Capillary Tube,” Journal of Fluids Engineering,
    ASME 129, pp. 957-965.
    [8] S. L. Lee, and C. F. Yang, 2010, “Bubble formation on the orifice of
    a submerged vertical nozzle,” National Tsing Hua University, P.M.E.
    PhD Thesis.
    - 18 -
    [9] Michael S. Longuet-Higgins, Bryan R. Kerman, and Knud Lunde,
    1991, “The release of air bubbles from an underwater nozzle,” J.
    Fluid Mech., 230, pp. 365-390.
    [10] Hasan N. Oguz a1, and Andrea Prosperetti, 1993, “Dynamics of
    bubble growth and detachment from a needle,” J. Fluid Mech., 257,
    pp. 111-145.
    [11] S. T. Thoroddsen, T. G. Etoh, and K. Takehara, 2007, “Experiments
    on bubble pinch-off,” Phys. Fluids, 19, 042101.
    [12] J. M. Gordilloa, 2008, “Axisymmetric bubble collapse in a quiescent
    liquid pool. I. Theory and numerical simulations,” Phys. Fluids, 20,
    112103.
    [13] R. Bolanos-Jimenez, A. Sevilla, C. Martinez-Bazan, and J. M.
    Gordillo, 2008, “Axisymmetric bubble collapse in a quiescent liquid
    pool. II. Experimental study,” Phys. Fluids, 20, 112104.
    [14] R. Bolanos-Jimenez, A. Sevilla, C. Martinez-Bazan, D. van der Meer,
    and J. M. Gordillo, 2009, “The effect of liquid viscosity on bubble
    pinch-off,” Phys. Fluids, 21, 072103.
    [15] P. C. Duineveld, 1995, “The Rise Velocity and Shape of Bubbles in
    Pure Water at High Reynolds Number,” J. Fluid Mech., 292, pp.
    325-332.
    [16] Mingming Wu, and Morteza Gharib, 2002, “Experimental Studies on
    the Shape and Path of Small Air Bubble Rising in Clean Water,”
    Phys. Fluids, 14, pp. L49-L52.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE