簡易檢索 / 詳目顯示

研究生: 曾士桓
Shin-Huan Tseng
論文名稱: 以區域為基礎之互動式影像擷取
Interactive Region-Based Image Retrieval
指導教授: 許秋婷
Chiou-Ting Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 60
中文關鍵詞: 區域互動式影像擷取
外文關鍵詞: Region-Based, Interactive, Relevance Feedback, Image Retrieval
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,隨著影像資料量的增加,我們需要有效的方法去建檔,搜尋,和擷取這些影像。所以在電腦視覺和多媒體方面,以內容為基礎的影像擷取已經佔有很重要的領域。影像擷取分成兩部分,一是以整張影像內容去做搜尋,二是以區域為基礎去做搜尋。用這些區域可以提供搜尋一張影像裡面某些特定的內容。
    本論文提出一個以區域為基礎的互動式影像擷取系統。首先,我們利用顏色分群以及標記法將影像切割成許多區域。接著我們擷取出一些具有不受幾何轉換影響的特徵來描述每個區域。這些特徵包括:主要顏色,顏色統計圖,形狀特徵 (moment invariants) 以及材質特徵。之後,我們使用這些區域的特徵向量來代表每張影像。

    由於每個特徵去有不同的重要性,且影像內每個區域所佔的比重也不相同;因此我們定義一階層式的影像距離評量方法。透過互動式的回饋查詢,我們可以計算出理想中的區域特徵以及區域內每個特徵之間的比重。

    我們提供三種不同的搜尋方式: 以一張影像搜尋,以某一個特定的區域搜尋,將區域組合去搜尋。我們做了很多實驗證明上述方法的有效性,並比較經由三種不同的搜尋方式得出的實驗結果,實驗結果顯示透過此方法,的確可以找到比較理想的搜尋結果。


    This thesis proposes an interactive region-based image retrieval system. Initially, we use color clustering by K-means algorithm and region l ling to segment an image into regions. Several geometric invariant features, such as dominant color, color histogram, moment invariants, and co-occurrence texture features, are extracted from regions. Then, we describe each image as a combination of feature vectors of the segmented regions.
    To measure the image distance, we define a hierarchical distance function as a liner combination of region features. The retrieved results can be refined via interactive relevance feedback. To learn the “ideal” query regions that the users really want, we derive the weighting parameters of distance measurement using optimized learning technique.

    A series of experiments on three query types demonstrate that the effectiveness of our work.

    1. Introduction 1 2. Previous Work and Backgrounds 3 2.1 Feature extraction and matching 3 2.1.1 Color 3 2.1.2 Texture 4 2.1.3 Shape 4 2.2 Relevance Feedback 5 2.3 Image Retrieval Systems 6 3. Region Segmentation by Color Clustering and Region Labeling 8 3.1 Color clustering in different color spaces 8 3.2 K-Means with connectivity constraint algorithm (KMC) 12 3.3 Color Clustering by K-means algorithm 15 3.4 Region Labeling 19 4. Feature Extraction and Indexing 21 4.1 Dominant Color 21 4.2 Color histogram 22 4.3 Shape 22 4.4 Texture 24 5. Retrieval with Relevance Feedback 27 5.1 Feature distance measurement 27 5.2 Relevance feedback by a single region 29 5.3 Relevance feedback by multiple regions 31 6. Experimental results and discussion 33 6.1 Query by an image 35 6.1.1 Diagonal Euclidean matrix 35 6.1.2 General Euclidean matrix 39 6.2 Query by a single region 41 6.1.1 Diagonal Euclidean matrix 41 6.2.2 General Euclidean matrix 45 6.3 Query by multiple regions 48 6.3.1 Diagonal Euclidean matrix 48 6.3.2 General Euclidean matrix 51 7. Conclusions and Future Work 54 8. Reference 55 APPENDIX 58

    [1] I. Kompatsiaris, M.G. Strintzis, “Spatiotemproal segmentation and tracking of
    object for visualization of videocoference image sequences,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 1, pp. 1388-1402, Dec. 2000.
    [2] S.Z Selim, M.A. Ismail, “K-means-type algorithm,” IEEE Trans .Pattern Anal. Machine Intell., vol. 6, pp. 81-87, Jan. 1984.
    [3] A. Hanjalic, H. Zhang, “An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 8, pp. 1280-1289, Dec. 1999.
    [4] T. Uchiyama, A. Arbib, “Color image segmentation using competitive learning,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 12, pp. 1197-1206, Dec. 1994.
    [5] A. Del Bimbo, Visual information retrieval, Morgan Kaufmann, 1999.
    [6] L.G Shapiro, G.C. Stockman, Computer vision, Prentice Hall, 2001.
    [7] M. Sonka, V. Hlavac, R. Boyle, Image processing, analysis, and machine vision, second edition, Brook/Cole, 1999.
    [8] R.G. Gonzalez, R.E. Woods, Digital image processing, Addison Wesley, 1993
    [9] Computer Graphics Color Space,
    http://cs.fit.edu/wds/classes/cse5255/cse5255/davis/index.html.
    [10] Y. Linde, A. Buzo, and R.M Gray, “An algorithm for vector quantization design,” IEEE Trans on Communications, COM-28”84-95, January 1980.
    [11] Y. Rui, T.S. Huang, “Relevance feedback: a power tool for interactive content-based image retrieval,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 5, pp. 644-655, Sep. 1998.
    [12] Y. Isikawa, R. Subramanya, and C. Faloutsos, “MindReader: querying database through multiple examples,” Proceeding of 24th VLDB Conference, 1998.
    [13] Y. Rui, T.S. Huang, “Optimizing learning in image retrieval,” CVPR’00, Hilton Head Island, SC, Jun. 2000.
    [14] Y. Rui, T.S. Huang, and S.F. Chang, “Image retrieval: current techniques, promising directions, and open issues,” Journal of Visual Communication and Image Representation 10, pp.39-62, Jan 1999. available online at http://www.idealibrary.com
    [15] C.S. Fuh, S.W Cho, and K. Essig, “Hierarchical color image region segmentation for content-based image retrieval system,” IEEE Trans. Image Processing., vol. 9, no 1, pp. 156-162, Jan. 2000.
    [16] J.S. Payne, L. Hepplewhite, and T.J Stonham, ”Perceptually based metrics for the evaluation of textural image retrieval methods,” IEEE International Conference on Multimedia Computing and Systems, pp 793-797, vol: 2, 1999.
    [17] D. Zhong, S.F. Chang, “An integrated approach for content-based video object segmentation and Retrieval,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 8, pp. 1259-1268, Dec. 1999.
    [18] H.W. Yoo, et al., “Visual information retrieval system via contented-based approach,” Pattern Recognition., vol. 35, Issue: 3, pp. 749-769, March, 2002.
    [19] A. Mojsilovic et al., ”Matching and retrieval based on the vocabulary and grammar of color patterns,” IEEE Trans. Image Processing., vol. 9, no 1, pp. 38-54, Jan. 2000.
    [20] X.S. Zhou, Thomas S. Huang, “Edge-based structural features for content-based image retrieval”, Pattern Recognition Letters 22, pp. 457-468, 2001.
    [21] Ingemear J. Cox et al., “The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments,” IEEE Trans. Image Processing., vol. 9, no 1, pp. 20-37, Jan. 2000.
    [22] A. Vailaya, Mario A.T. Figueiredo, A.K. Jain, and H.J. Zhang, “Image Classification for content-based indexing,” IEEE Trans. Image Processing., vol. 10, no 1, pp. 117-129, Jan. 2001.
    [23] J.W. Hsieh et al., “Region-based image retrieval,” Proceeding of IEEE International conference on Image Processing, 2000.
    [24] H. Grecu, P. Lambert, “Image retrieval by partial queries,” Proceeding of IEEE International conference on Image Processing, 2001.
    [25] M.K. Hu, “Visual Pattern Recognition by Moment Invariant,” IRE Trans. Information Theory, 8(2):179-187, 1962.
    [26] T.S Huang, X.S Zhou, “Image retrieval with relevance feedback: from heuristic weight adjustment to optimal Learning methods,” Proceeding of IEEE International conference on Image Processing, 2001.
    [27] J. Yoon, N. Jayant, “ Relevance feedback for semantics based image retrieval,” Proceeding of IEEE International conference on Image Processing, 2001.
    [28] B.S. Manjunath et al., “Color and texture descriptors,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 6, pp. 703-715, Jun. 2001.
    [29] M. Bober, “MPEG-7 visual shape descriptors,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 6, pp. 716-719, Jun. 2001.
    [30] R. Milanese, “A rotation, translation, and scale-invariant approach to content-based image retrieval,” Journal of Visual Communication and Image Representation 10., pp. 186-196, 1999.
    [31] Y. Rui, T.S. Huang, and S. Mehrotra, “Content-based image retrieval with relevance feedback in MARS,” in Proc. IEEE Int, Conf. On Image Porc. 1997.
    [32] X. Wan, C.-C. J. Kuo, “A new approach to image retrieval with hierarchical color clustering,” IEEE Trans. Circuits Syst. Video Technol., vol.8, no. 5, pp. 628-643, Sep. 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE