研究生: |
陳俞辰 Chen, Yu-Chen |
---|---|
論文名稱: |
鈷、銪摻雜之氫氧化釔奈米管之製備與結構分析 Preparation and Structure Analysis of Cobalt and Europium doped Yttrium Hydroxide and Yttrium Oxide Nanotubes. |
指導教授: |
蘇雲良
Soo, Yun-Liang |
口試委員: |
蘇雲良
Soo, Yun-Liang 張石麟 湯茂竹 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 氧化釔 、鈷 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對以高介電質(high-k material)材料為主體的稀磁性氧化物(DMOs, diluted magnetic oxides)系統,研究其生成條件和摻雜物與結晶的形狀的關連,並研究結晶大小和磁性的關係。透過溶液加熱法(solvent thermal)於化學液相環境中(chemical bath)中合成微米等級氫氧化釔奈米管(nanotube),並嘗試調控反應溫度,以改變奈米管的外觀形狀,另一方面掺雜過渡金屬鈷和稀土元素銪,來了解氫氧化釔奈米管的成長機制;在通過氧氣氣氛退火方式,轉變為氧化釔粉末量測磁性特性。
透過X光粉末繞射分析,確認粉末樣品主體為氫氧化釔六角(hexagonal)晶型,經過氣氛退火後為氧化釔方錳鐵礦(cubic bixbyite)晶型,並且確認沒有可量測到的鈷和銪氧化物的相。再透過場發射掃描式電子顯微鏡(FE-SEM),觀察氫氧化釔奈米管的外觀形狀和晶體大小。使用近邊X光精密吸收結構(XANES)排除摻雜原子形成氧化物或叢聚(cluster)的可能性,並以延伸X光精密吸收結構(EXAFS)分析確認鈷原子鑲嵌(interstitial)於氫氧化釔或是氧化釔的主體結構中,而銪原子鑲嵌於氫氧化釔的顆粒邊界(grain boundary)上,以此說明掺雜鈷原子的氫氧化釔結晶形狀不同於摻雜銪原子的結晶形狀。利用超導量子干涉儀(SQUID)量測掺雜鈷的氧化釔奈米管和奈米粒子,掺雜鈷的奈米管呈現反磁性(diamagnetism),而奈米粒子則為順磁與鐵磁的混合態。
由磁性的結果我們可以推斷出當結晶大小大於一個微米時,DMO系統產生磁性的機構會被破壞。
In this thesis, we have studied the correlation between dopant element and morphology of nanotubes in yttrium hydroxide. Yttrium hydroxide nanotubes, doped with cobalt or europium, were synthesized by solvent thermal method of yttrium chloride, cobalt chloride, and europium chloride. We demonstrate that the morphology of yttrium hydroxide nanotubes can be controlled by changing the dopant material and reaction temperature. The crystal structures of yttrium hydroxide host were probed by x-ray diffraction (XRD). We confirmed the host structure is in hexagonal phase. The sizes and morphologies of nanotubes were determined by field emission scanning electron microscopy (FE-SEM). Cobalt K-edge x-ray absorption near-edge structure (XANES) spectra were used to confirm that the dopant atoms do not form oxides or cluster. Extended x-ray absorption fine structure (EXAFS) technique has been employed to probe the local environments surrounding cobalt and europium in these materials. The cobalt impurity atoms were found to locate on interstitial sites. On the other hand, the europium impurity atoms were found to locate on the grain boundary of the yttrium hydroxide nanotubes. And the difference between the positions of cobalt atoms and those of europium atoms may explain why the morphologies of cobalt doped nanotubes and europium doped nanotubes are so different. The SQUID measurement at 300K reveals that the yttrium oxide nanotubes were diamagnetic. However, the nanoparticle samples, synthesized by a similar procedure, exhibit a combination of ferromagnetism and paramagnetism. That may set an upper limit of particle size in the ferromagnetic phase to insulator phase transition in DMOs system.
[1] J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald “Donor impurity band exchange in dilute ferromagnetic oxides” Nature Material, 4, 173, (2005).
[2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff “Giant Magnetoresistance of (001)Fel(001) Cr Magnetic Snperlattices”, Phys. Rev. Lett., 61, 2472-2475(1988) .
[3] B. T. Jonker, Y. D. Park, and B. R. Bennett , H. D. Cheong, G. Kioseoglou, and A. Petrou “Robust electrical spin injection into a semiconductor heterostructure” Phys. Rev. B, 62, 8180-8183 (2000) .
[4]C. S. Wang, Y. L. Soo “Preparation and structure analysis of Co-doped Y2O3 nanocrystal” 國立清華大學物理系碩士論文(2009)
[5]T. S. Wu, Y. L. Soo “Preparation and characterization of manganese and cobalt doped yttrium oxide magnetic nanoparticles” 國立清華大學物理系碩士論文(2010)
[6] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors” Science, 287, 5455, 1019-1022 (2000).
[7] K. Sato and H. Katayama-Yoshida, “Material design for transparent ferromagnets with ZnO-based magnetic semiconductors”, Jpn. J. Appl. Phys., 39, L555 (2000) .
[8] K. Sato and H. Katayama-Yoshida, K. Sato and H. Katayama-Yoshida,” First principles materials design for semiconductor spintronics”, Semicond. Sci. Technol., 17, 367–376 (2002) .
[9]Charles Kittel, “Introduction to solid state physics”
[10] A. Kaminski and S. Das Sarma, “Polaron Percolation in Diluted Magnetic Semiconductors”, Phys. Rev. Lett., 88, 247202 (2002) .
[11] A. C. Durst, R. N. Bhatt, and P. A. Wolff “Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors” Phys. Rev. B, 65, 235205, (2002).
[12] M. K. Devaraju, S. Yin and T. Sato “A rapid hydrothermal synthesis of rare earth oxide activated Y(OH)3 and Y2O3 nanotubes”, Nanotechnology, 20, 305302 (2009).
[13] X. Wu, Y. Tao, F. Gao, L. Dong, Z. Hu “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires”, J. Cryst. Growth., 277, 643–649 (2005).
[14] Y. Mao, X. Guo, T. Tran, K. L. Wang, K. Shih, and J. P. Chang “Luminescent properties of ensemble and individual erbium-doped yttrium oxide nanotubes”, J. Appl. Phys., 105, 094329, (2009).
[15]Y. P. Fang, A. W. Xu, L. P. You, R. Q. Song, J. C. Yu, H. X. Zhang, Q. Li, and H. Q. Liu “Hydrothermal synthesis of rare earth (Tb,Y) Hydroxide and oxide nanotubes”, Adv. Funct. Mater, 13, No.12, December (2003).
[16] N. Zhang, X. Liu, R. Yi, R.Shi, G. Gao, and G. Qiu, “Selective and Controlled Synthesis of Single-Crystalline Yttrium Hydroxide/Oxide Nanosheets and Nanotubes” J. Phys. Chem. C, 112, 17788–17795 (2008)
[17] R. L. Penn and J .F. Banfield Geochim. Cosmochim. Acta, 63, 1549–1557 (1999).
[18] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert and R. L. Penn “Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products” Science 289 751–754 (2000).
[19] R. L. Penn, G. Oskam, T. J. Strathmann, P. C. Searson, A. T. Stone and D. R. Veblen ” Epitaxial Assembly in Aged Colloids” J. Phys. Chem. B 105 2177–2182 (2001).
[20] G. J. Strijkers, J. H. J. Dalderop, M. A. A. Broeksteeg, H. J. M. Swagten, and W. J. M. de Jonge “Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina” J. Appl. Phys., 86, 5241 (1999).
[21] J. B. Cui and U. J. Gibson “Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays” Appl. Phys. Lett., 87, 133108 (2005).
[22] G. C. Han, B. Y. Zong, P. Luo, and Y. H. Wu “Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays” J. Appl. Phys., 93, 9202 (2003).
[23] P. Landeros, O. J. Suarez, A. Cuchillo, and P. Vargas “Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes” Phys. Rev. B, 79, 024404 (2009).
[24]H. Y. Chang, H. I. Chen ”Morphological Manipulation of Cerium Oxide Nanopowders- Preparation, Characterization, and Catalytic Oxidation Activity” 國立成功大學化學工程學系博士論文(2005)
[25] L. M. Johnson, A. Thurber, J. Anghel, M. Sabetian, M. H. Engelhard, D. A. Tenne, C. B. Hanna, and A. Punnoose “Transition metal dopants essential for producing ferromagnetism in metal oxide nanoparticles” Phys. Rev. B, 82, 054419 (2010).
[26] Y. L. Soo, J. H. Yao, C. S. Wang, S. L. Chang, C. A. Hsieh, J. F. Lee, and T. S. Chin “Local structures and concentration dependence of magnetic properties in Cr- and Mn-doped amorphous silicon ferromagnetic thin films” Phys. Rev. B, 81, 104104 (2010).
[27] G. Mountjoy, J.M. Cole, T. Brennan, R.J. Newport, G.A. Saunders, G.W. Wallidge “A rare earth L3-edge EXAFS and L1-edge XANES study of Ce, Nd and Eu phosphate glasses and crystals in the composition range from metaphosphate to ultraphosphate” J. Non-Cryst. Solids, 279, 20-27, (2001)
[28]B. R. Chen, Y. L. Soo “Preparation and Structure Analysis of Tb-doped TiO2 Nanoparticles” 國立清華大學物理系碩士論文 (2010)
[29] Q.G. Zeng, Z.J. Ding, and Z.M. Zhang “Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature” J. Lumin., 118, 301-307, (2006).