研究生: |
黃 瀚 Huang, Han |
---|---|
論文名稱: |
利用氧化鋅奈米線置於二維六方氮化硼-磊晶成長單晶鋁基板之表面雷射應用 ZnO Nanolaser with h-BN Insulator on Epitaxially Grown Aluminum Substrate |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
果尚志
Gwo, Shangjr 施至剛 Shih, Chih-Kang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 奈米雷射 、二維材料 、磊晶鋁膜 、機械剝離 |
外文關鍵詞: | nanolaser, 2D material, epitaxially grown aluminum film, mechanical exfoliation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在相同路徑中傳播時,奈米雷射於傳遞資訊中扮演重要的角色,因其具有高速、低能量損耗及光子間不會互相干擾的特性。在本研究中,我們利用半導體 - 介電層 - 金屬(SIM)結構基於表面電漿極化(SPP)耦合來突破繞射極限。通過化學氣相沉積製造的單根高結晶度氧化鋅奈米線作為增益介質對於在室溫下雷射操作是至關重要的。用作電漿子耦合之奈米腔的二維材料六方氮化硼(h-BN)通過機械剝離製備,並置於奈米線和單晶鋁膜之間。發現SIM結構比沒有SPP效應的單根奈米線具有更優良的光學表現。當光在介電層和金屬基板之間的界面處傳播時,h-BN和鋁膜的高結晶度是降低電漿子損耗的關鍵因素。
Nanolasers play an important role in transmitting messages with high speed, low energy loss and without interruption to each other when propagating in the same path. In this work, a semiconductor-insulator-metal (SIM) structure of ultraviolet nanolaser based on surface plasmon polariton (SPP) breaking through the diffraction limit has been achieved. A gain medium of the single high crystallinity zinc oxide nanowire fabricated by chemical vapor deposition is crucial for laser operating at room temperature. The two-dimensional material, hexagonal boron nitride (h-BN), which acts as the plasmonic nanocavity is prepared by mechanical exfoliation and is placed between a nanowire and the single crystal aluminum film. The SIM structure was found to exhibit higher optical intensity than the single nanowire without SPP effect. The high crystallinity of the h-BN and the aluminum film are both the key factors to decrease the plasmonic losses when the light propagating at the interface between the dielectric layer and the metal substrate.
Chapter 1
[1.1] R. P. Feynman, There’s Plenty of Room at the Bottom at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
[1.2] J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension synthesis and properties of nanowires and nanotubes. Accounts of chemical research 32, 435-445 (1999).
[1.3] Y.Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851-853 (2001).
[1.4] Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks. Science 294, 1313-1317 (2001).
[1.5] J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060-2063 (2001)
[1.6] W.I. Park, G.C. Yi, M. Kim, S.J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Advanced Materials 15, 526-529 (2003).
[1.7] W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287-1289 (1997).
[1.8] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, S. Iijima, Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285, 1719-1722 (1999).
[1.9] C. Dekker, Carbon nanotubes as molecular quantum wires. Physics Today 52,
22-28 (1999).
[1.10] Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Coaxial nanocable: silicon carbide
and silicon oxide sheathed with boron nitride and carbon. Science 281, 973-975 (1999).
[1.11] X. Duan, C. M. Lieber, General synthesis of compound semiconductor nanowires. Advanced Materials 12, 298-302 (2001).
[1.12] M. S. Gudiksen, J. Wang, C. M. Lieber, Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105, 4062-4064 (2001).
[1.13] Y. Cui, X. Duan, J. Wang, C.M. Lieber, Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213-5216 (2000).
[1.14] C. A. Balzani, M. Venturi, The bottom-up approach to molecular-level devices and machines. Chem. Eur. J. 8, 5524-5532 (2002).
[1.15] R. S. Wagner, W. C. Ellis, Vapor-Liquid-Solid mechanism of single crystal growth. Appl. Phys Lett. 4, 89-90 (1964).
[1.16] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B. 15, 554-557 (1997).
[1.17] A. M. Morales, C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 279, 208-211 (1998).
[1.18] R. Ghosh, P. K. Giri, Silicon nanowire heterostructures: growth strategies, novel properties and emerging applications. Sci. Adv. Today 2, 25230 (2016).
[1.19] K. Yao, P. Chen, Z. Zhang, J. Li, R. Ai, H. Ma, B. Zhao, G. Sun, R. Wu, X. Tang, B. Li, J. Hu, X. Duan, Synthesis of ultrathin two-dimensional nanosheets and van der
Waals heterostructures from non-layered γ-CuI. npj 2D Materials and Applications 2, 1-7 (2018).
[1.20] S. Zhang, Y. Sunami, H. Hashimoto, Mini review: Nanosheet technology towards biomedical application. Nanomaterials 7, 246-253 (2017).
[1.21] Z. Lu, Z. Chang, W. Zhu, X. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 47, 9651-9653 (2011).
[1.22] J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 11, 2560-2568 (2018).
[1.23] O. Bashir, Z. Khan, Silver nano-disks: Synthesis, encapsulation, and role of water soluble starch. J. Mol. Liq. 199, 524-529 (2014).
[1.24] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351-355 (2008).
[1.25] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907 (2008).
[1.26] A. K. Geim, Graphene: Status and prospects. Science 324, 1530-1534 (2009).
[1.27] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nature Nanotech. 6, 147-150 (2011).
[1.28] O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, Z. Mi, Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 15, 5302-5306 (2015).
[1.29] D. J. Bergman, M. I. Stockman, Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
[1.30] M. I. Stockman, The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010).
[1.31] R.F. Oulton, V.J. Sorger, D. Genov, D. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2, 496-500 (2008).
[1.32] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216, 398-410 (1968).
[1.33] S.A. Maier, Plasmonics: fundamentals and applications. Springer Science & Business Media, (2007).
[1.34] R. Ritchie, E. Arakawa, J. Cowan, R. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530-1533 (1968).
[1.35] M. I. Stockman, Spasers explained. Nature Photon. 2, 327-329 (2008).
[1.36] Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter. 16, R829-R858 (2004).
[1.37] X. Y. Kong, Z. L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625-1631 (2003).
[1.38] B. Ha, H. Ham, C. J. Lee, Photoluminescence of ZnO nanowires dependent on O2 and Ar annealing. J. Phys. Chem. Solids. 69, 2453-2456 (2008).
[1.39] D. Gérard, S. K. Gray, Aluminium plasmonics. J. Phys. D: Appl. Phys. 48, 184001 (2015).
Chapter 2
[2.1] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S van der Zant, and G. A Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
[2.2] F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, C.-K. Shih, Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties. ACS Nano. 10, 9852-9860 (2016).
[2.3] B. Fultz, J. Howe, Transmission electron microscopy and diffractometry of materials. Springer-Verlag: Berlin, Germany, 1-118 (2001).
[2.4] G. Binning, C. F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930-933 (1986).
[2.5] J. E. Jones, On the determination of molecular fields. —II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106, 463-477 (1924).
Chapter 3
[3.1] A. Travlos, N. Boukos, C. Chandrinou, H. S. Kwack, L. S. Dang, Zinc and oxygen vacancies in ZnO nanorods. J. Appl. Phys. 106, 104307 (2009).
[3.2] R.F. Oulton, V.J. Sorger, D. Genov, D. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics. 2, 496-500 (2008).
Chapter 4
[4.1] A. Laturia, M. L. V. de Put, W. G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Materials and Applications 2, 1-7 (2018).
Chapter 5
[5.1] C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, J. Leuthold, All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics 9, 525–528 (2015).
[5.2] J. M. Jornet, I. F. Akyildiz, Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE JSAC 31, 685-694 (2013).
[5.3] L. Ye, K. Sui, Y. Liu, M. Zhang, Q. H. Liu, Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation. Opt. Express 26, 15935-15947(2018).
[5.4] Y. Xu, Z. Guo, H. Chen, Y. Yuan, J. Lou, X. Lin, H. Guo, H. Chen, B. Yu, In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 99, 133109 (2011).
[5.5] L. Fu, Y. Sun, N. Wu, R. G. Mendes, L. Chen, Z. Xu, T. Zhang, M. H. Rümmeli, B. Rellinghaus, D. Pohl, L. Zhuang, L. Fu, Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10, 2063-2070 (2016).
[5.6] N. Flöry, A. Jain, P. Bharadwaj, M. Parzefall, T. Taniguchi, K. Watanabe, L. Novotny, A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 107, 123106 (2015).
[5.7] S. Glassner, H. Keshmiri, D. J. Hill, F. F. Cahoon, B. Fernandez, M. I. Hertog, A. Lugstein, Tuning electroluminescence from a plasmonic cavity-coupled silicon light source. Nano Lett. 18, 7230-7237 (2018).