研究生: |
陳婷婷 Chen, Ting-Ting |
---|---|
論文名稱: |
缺陷可調控的氧化鋅之研究: 合成、性質與應用 An Investigation of ZnO with Tailored Defects: Synthesis, Properties and Applications |
指導教授: |
李紫原
Lee, Chi-Young |
口試委員: |
裘性天
Hsin-Tien Chiu 徐文光 Wen-Kuang Hsu 吳振名 Jenn-Ming Wu 陳登銘 Teng-Ming Chen |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 123 |
中文關鍵詞: | 氧化鋅 、缺陷 、光催化 、米式散射 |
外文關鍵詞: | zinc oxide, defect, photocatalyst, Mie scattering |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在光觸媒及物理性紫光線防曬劑的應用上,氧化鋅的光催化活性扮演非常重要的角色。本研究的主要目的為研發新的合成方法,增加氧化鋅中的本質缺陷,藉此控制其載子再復合的性質,並同時滿足相關應用上對於光催化活性的要求。在本研究中,將使用兩種不同的方法來製備具有本質缺陷的氧化鋅作為光觸媒及物理性紫光線防曬劑的材料。
第一,在熱溶劑法的合成中,添加微量的氧化石墨烯,其產物為同時具有順磁性的氧空缺及鋅空缺的氧化鋅。在順磁性缺陷的生成反應,氧化的石墨烯不僅中具有催化作用的特性,並且會改變缺陷生成的方式。 同時具備順磁性的氧空缺及鋅空缺的氧化鋅展現出優異的光催化活性,能快速地分解甲基橙。根據電子順磁共振的能與犧牲試劑的測試,在光催化的過程中,由於順磁性的氧空缺及鋅空在氧化鋅的能隙中增加了額外的能階,進而加速電子電洞對的分離,降低了電子電洞對的再復合的機率,並且在氧化鋅的表面會產生高活性的電洞及氫氧自由基,進而提升光催化的表現。
第二部分為以熱分解非晶/層狀鋅鹽的微米球,來製備具有缺陷的氧化鋅微米球以作為新一代的物理性紫外光防曬材料。其中,先以回流法合成均勻的非晶/層狀鋅鹽微米球。此反應中,以檸檬酸鈉為螯合劑,捕捉溶液中的鋅離子,以防生成氧化鋅。 藉由調整檸檬酸根與氫氧根離子的濃度,進而控制非晶/層狀鋅鹽的微米球的尺寸及均勻性。同時,本文將針對溶液中鋅離子、檸檬酸根離子與氫氧根離子的濃度關係對於產物的形貌及結構影響進行探討。 熱分解非晶/層狀鋅鹽的微米球後所得到的氧化鋅微米球具有高濃度的氧空缺,因此造成吸收可見光的特性並且有效地抑制光催化活性。除此之外,更具有米式散射的特性,使得均勻的氧化鋅微米球具有成為物理性紫光線防曬劑材料之潛力。
Defects play a very important role in photoactivity of ZnO for the applications of photocatalysis and cosmetic physical UV blocker. In this study, there are two strategies to synthesize the defect-tailored ZnO. First, as graphene oxide (GO) is used as an additive in a solvothermal reaction, paramagnetic VO+ and VZn- defects are formed in ZnO. Whereas, in the absence of GO, only paramagnetic VO+ defects are produced through oxygen desorption. Experimental results indicate that GO not only acts as a catalyst for the ionization reaction, but also changes the dominant defect formation pathway in ZnO lattice. Both GO and reduced graphene oxide (rGO) function as catalysts for further ionization to create paramagnetic zinc and oxygen vacancies, respectively.
ZnO/rGO with many zinc and oxygen vacancies exhibits significant photocatalytic activity. Photoluminescence and electron paramagnetic resonance measurements indicate that the zinc vacancies and oxygen vacancies are generated on the ZnO surface, and are crucial to that photocatalytic behavior. The photodegradation of methylene orange is significantly reduced by the addition of scavengers with the ZnO/rGO by scavenges of h+ and •OH. Both zinc and oxygen vacancies cause effective charge separation in the photodegradation of methylene orange, which markedly inhibits the recombination of charges.
Second, thermal decompose of amorphous/layered basic zinc salts (LBZ) spheres is used to prepare highly defected ZnO with Mie scattering properties as a cosmetic physical UV blocker material. Amorphous/layered basic zinc salts spheres are synthesized in a reflux reaction. The trisodium citrate is employed as the chelating agent. The sphere size is controlled by the nuclei number which depends on the competition between hydroxyl ion and citrate to complex with Zn2+. The formation pathway and morphology evolution are discussed.
The wurtzite ZnO sphere obtained by thermal decomposition exhibits the visible absorption owing to the oxygen vacancies in ZnO lattice. In addition, excess oxygen vacancies in the ZnO spheres become a recombination center and reduced the radical formation during photocatalysis. The uniform microspheres exhibit Mie scattering in the visible range due to the interaction with specific incident electromagnetic radiation, and thus the full absorption spectrum is easily obtained by tuning the size of spheres. Such uniform ZnO spheres exhibit superior visible absorption and Mie scattering effects thus is expected for the material of cosmetic physical UV blocker.
1. T. Hanada, in Oxide and Nitride Semiconductors, Springer Berlin Heidelberg, 2009, vol. 12, pp. 1-19.
2. A. Janotti and C. G. V. d. Walle, Reports on Progress in Physics, 2009, 72, 126501.
3. L. Schmidt-Mende and J. L. MacManus-Driscoll, Materials Today, 2007, 10, 40-48.
4. Z. L. Wang, Journal of Physics: Condensed Matter, 2004, 16, 829-858.
5. Z. L. Wang, Materials Today, 2004, 7, 26-33.
6. Z. L. Wang, Materials Science and Engineering: R: Reports, 2009, 64, 33-71.
7. H. Morkoç and Ü. Özgür, in Zinc Oxide, Wiley-VCH Verlag GmbH & Co. KGaA, 2009, pp. 1-76.
8. J. Bao, M. A. Zimmler, F. Capasso, X. Wang and Z. F. Ren, Nano Letters, 2006, 6, 1719-1722.
9. G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, A. M. Liu and T. P. Yang, Applied Physics Letters, 2006, 89, 052113
10. Z. L. Wang and J. Song, Science, 2006, 312, 242-246.
11. M. Chen, L. Hu, J. Xu, M. Liao, L. Wu and X. Fang, Small, 2011, 7, 2449-2453.
12. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, Nano Letters, 2007, 7, 1003-1009.
13. Z. Zhan, L. Zheng, Y. Pan, G. Sun and L. Li, Journal of Materials Chemistry, 2012, 22, 2589-2595.
14. J. Xu, Q. Pan, Y. a. Shun and Z. Tian, Sensors and Actuators B: Chemical, 2000, 66, 277-279.
15. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan and L. Vayssieres, Nanotechnology, 2006, 17, 4995-4998.
16. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee and S.-H. Hong, Applied Physics Letters, 2008, 93, 263103.
17. J. S. S. Michelle, W. J. W. Kester and Y. Irene, Journal of Physics: Condensed Matter, 2012, 24, 305001.
18. Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang and L. Jiang, Advanced Materials, 2012, 24, 1046-1049.
19. J. Fan, Y. Hao, C. Munuera, M. García-Hernández, F. Güell, E. M. J. Johansson, G. Boschloo, A. Hagfeldt and A. Cabot, The Journal of Physical Chemistry C, 2013, 117, 16349-16356.
20. D. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber and J. MacManus-Driscoll, Nanoscale Research Letter, 2012, 7, 1-8.
21. H. M. Chen, C. K. Chen, Y.-C. Chang, C.-W. Tsai, R.-S. Liu, S.-F. Hu, W.-S. Chang and K.-H. Chen, Angewandte Chemie International Edition, 2010, 49, 5966-5969.
22. Y. Qiu, K. Yan, H. Deng and S. Yang, Nano Letters, 2011, 12, 407-413.
23. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang and Y. Li, Nano Letters, 2009, 9, 2331-2336.
24. S. Baruah, S. S. Sinha, B. Ghosh, S. K. Pal, A. K. Raychaudhuri and J. Dutta, Journal of Applied Physics, 2009, 105, 074308-074306.
25. Y. Lai, M. Meng, Y. Yu, X. Wang and T. Ding, Applied Catalysis B: Environmental, 2011, 105, 335-345.
26. Q.-P. Luo, X.-Y. Yu, B.-X. Lei, H.-Y. Chen, D.-B. Kuang and C.-Y. Su, The Journal of Physical Chemistry C, 2012, 116, 8111-8117.
27. J. Wang, P. Liu, X. Fu, Z. Li, W. Han and X. Wang, Langmuir, 2008, 25, 1218-1223.
28. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang and Y. Dai, ACS Applied Materials & Interfaces, 2012, 4, 4024-4030.
29. T. Xu, L. Zhang, H. Cheng and Y. Zhu, Applied Catalysis B: Environmental, 2011, 101, 382-387.
30. Q. Zhang, C. Tian, A. Wu, T. Tan, L. Sun, L. Wang and H. Fu, Journal of Materials Chemistry, 2012, 22, 11778-11784.
31. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu and Y. Zhu, Inorganic Chemistry, 2007, 46, 6675-6682.
32. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong and W. Huang, Applied Physics Letters, 2006, 89, 123902
33. K. Yang, G.-W. She, H. Wang, X.-M. Ou, X.-H. Zhang, C.-S. Lee and S.-T. Lee, The Journal of Physical Chemistry C, 2009, 113, 20169-20172.
34. T. G. Smijs and S. Pavel, Journal of Nanotechnology, Science and Applications, 2011, 4, 95-112.
35. B. D. More, Indian Journal of Dermatology, Venereology and Leprology, 2007, 73, 80-85.
36. C. A. Arguello, D. L. Rousseau and S. P. S. Porto, Physical Review, 1969, 181, 1351-1363.
37. G. Zhang, X. Shen and Y. Yang, The Journal of Physical Chemistry C, 2011, 115, 7145-7152.
38. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Advanced Materials, 2012, 24, 229-251.
39. S. Halpegamage, J. Tao, A. Kramer, E. Sutter and M. Batzill, Scientific Reports, 2014, 4, 4043.
40. Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das and Z. L. Wang, Nano Letters, 2010, 10, 3414-3419.
41. Y. Ding, X. Y. Kong and Z. L. Wang, Physical Review B, 2004, 70, 235408.
42. P. X. Gao and Z. L. Wang, Small, 2005, 1, 945-949.
43. D. Pradhan, Z. Su, S. Sindhwani, J. F. Honek and K. T. Leung, The Journal of Physical Chemistry C, 2011, 115, 18149-18156.
44. L. Xu, Q. Liao, J. Zhang, X. Ai and D. Xu, The Journal of Physical Chemistry C, 2007, 111, 4549-4552.
45. G. Zhang, X. Shen and Y. Yang, Journal of Physical Chemistry C, 2011, 115, 7145-7152.
46. M.-C. Wu and C.-S. Lee, Inorganic Chemistry, 2006, 45, 9634-9636.
47. L. Zhu, Y. Zheng, T. Hao, X. Shi, Y. Chen and J. Ou-Yang, Materials Letters, 2009, 63, 2405-2408.
48. K. Govender, D. S. Boyle, P. B. Kenway and P. O'Brien, Journal of Materials Chemistry, 2004, 14, 2575-2591.
49. P. Gerstel, R. C. Hoffmann, P. Lipowsky, L. P. H. Jeurgens, J. Bill and F. Aldinger, Chemistry of Materials, 2005, 18, 179-186.
50. T.-T. Chen, I. C. Chang, M.-H. Yang, H.-T. Chiu and C.-Y. Lee, Applied Catalysis B: Environmental, 2013, 142–143, 442-449.
51. K. I. Hagemark, Journal of Solid State Chemistry, 1976, 16, 293-299.
52. G. W. Tomlins, J. L. Routbort and T. O. Mason, Journal of Applied Physics, 2000, 87, 117-123.
53. A. Dhakshinamoorthy, M. Alvaro, P. Concepcion, V. Fornes and H. Garcia, Chemical Communications, 2012, 48, 5443-5445.
54. A. Dhakshinamoorthy, A. Primo, P. Concepcion, M. Alvaro and H. Garcia, Chemistry – A European Journal, 2013, 19, 7547-7554.
55. D. R. Dreyer, H.-P. Jia and C. W. Bielawski, Angewandte Chemie International Edition, 2010, 49, 6813-6816.
56. B. Frank, J. Zhang, R. Blume, R. Schlögl and D. S. Su, Angewandte Chemie International Edition, 2009, 48, 6913-6917.
57. Y. Gao, D. Ma, C. Wang, J. Guan and X. Bao, Chemical Communications, 2011, 47, 2432-2434.
58. H. Sun, S. Liu, G. Zhou, H. M. Ang, M. O. Tadé and S. Wang, ACS Applied Materials & Interfaces, 2012, 4, 5466-5471.
59. S. Tang and Z. Cao, Physical Chemistry Chemical Physics, 2012, 14, 16558-16565.
60. J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl and D. S. Su, Science, 2008, 322, 73-77.
61. D. R. Dreyer, K. A. Jarvis, P. J. Ferreira and C. W. Bielawski, Macromolecules, 2011, 44, 7659-7667.
62. J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu and J. Zhang, ACS Nano, 2013, 7, 4764-4773.
63. A. Lerf, H. He, M. Forster and J. Klinowski, The Journal of Physical Chemistry B, 1998, 102, 4477-4482.
64. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chemical Society Reviews, 2010, 39, 228-240.
65. H. He, J. Klinowski, M. Forster and A. Lerf, Chemical Physics Letters, 1998, 287, 53-56.
66. R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi and S. Lizzit, Journal of the American Chemical Society, 2011, 133, 17315-17321.
67. S. C. Markham, Journal of Chemical Education, 1955, 32, 540-543.
68. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.
69. A. Mills and S. Le Hunte, Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 1-35.
70. W. Y. Teoh, J. A. Scott and R. Amal, The Journal of Physical Chemistry Letters, 2012, 3, 629-639.
71. S. T. Kochuveedu, D.-P. Kim and D. H. Kim, The Journal of Physical Chemistry C, 2011, 116, 2500-2506.
72. E. Kowalska, R. Abe and B. Ohtani, Chemical Communications, 2009, 241-243.
73. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, Nano Letters, 2007, 7, 1793-1798.
74. G. Wang, X. Yang, F. Qian, J. Z. Zhang and Y. Li, Nano Letters, 2010, 10, 1088-1092.
75. J. Tang, J. R. Durrant and D. R. Klug, Journal of the American Chemical Society, 2008, 130, 13885-13891.
76. R. Georgekutty, M. K. Seery and S. C. Pillai, The Journal of Physical Chemistry C, 2008, 112, 13563-13570.
77. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei and J. Zhu, The Journal of Physical Chemistry C, 2008, 112, 10773-10777.
78. Y. Tian and T. Tatsuma, Journal of the American Chemical Society, 2005, 127, 7632-7637.
79. M. D. McCluskey and S. J. Jokela, Journal of Applied Physics, 2009, 106, 071101.
80. K. Hoffmann and D. Hahn, Physica Status Solidi A, 1974, 24, 637-648.
81. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, Advanced Functional Materials, 2010, 20, 561-572.
82. A. Janotti and C. G. Van de Walle, Physical Review B, 2007, 76, 165202.
83. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. G. Rao, W. K. Chan, H. F. Lui and C. Surya, Advanced Functional Materials, 2004, 14, 856-864.
84. C. H. Geisler and G. L. Simmons, Physics Letters, 1964, 11, 111-112.
85. A. Pöppl and G. Völkel, Physica Status Solidi A, 1990, 121, 195-204.
86. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, Journal of Applied Physics, 1996, 79, 7983-7990.
87. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. Caruso, M. J. Hampden-Smith and T. T. Kodas, Journal of Luminescence, 1997, 75, 11-16.
88. B. Yao, L. Feng, C. Cheng, M. M. T. Loy and N. Wang, Applied Physics Letters, 2010, 96, 223105
89. A. Pöppl and G. Völkel, Physica Status Solidi A, 1990, 121, 571-581.
90. D. Galland and A. Herve, Physics Letters A, 1970, 33, 1-2.
91. A. L. Taylor, G. Filipovich and G. K. Lindeberg, Solid State Communications, 1970, 8, 1359-1361.
92. D. S. Bohle and C. J. Spina, Journal of the American Chemical Society, 2009, 131, 4397-4404.
93. R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis and M. Menon, Physical Review B, 2009, 80, 195314.
94. C. Y. Zhang, X. M. Li, X. D. Gao, J. L. Zhao, K. S. Wan and J. M. Bian, Chemical Physics Letters, 2006, 420, 448-452.
95. J.-L. Zhao, X.-M. Li, J.-M. Bian, W.-D. Yu and C.-Y. Zhang, Journal of Crystal Growth, 2005, 280, 495-501.
96. H. Agura, A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, Thin Solid Films, 2003, 445, 263-267.
97. G. G. Valle, P. Hammer, S. H. Pulcinelli and C. V. Santilli, Journal of the European Ceramic Society, 2004, 24, 1009-1013.
98. G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee and S. T. Lee, Nano Letters, 2008, 8, 2591-2597.
99. G. Shen, J. H. Cho, J. K. Yoo, G.-C. Yi and C. J. Lee, The Journal of Physical Chemistry B, 2005, 109, 5491-5496.
100. C. X. Xu, X. W. Sun, X. H. Zhang, L. Ke and S. J. Chua, Nanotechnology, 2004, 15, 856-861.
101. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson and G. A. Gehring, Nature Materials, 2003, 2, 673-677.
102. K. Potzger, S. Zhou, H. Reuther, A. Mücklich, F. Eichhorn, N. Schell, W. Skorupa, M. Helm, J. Fassbender, T. Herrmannsdörfer and T. P. Papageorgiou, Applied Physics Letters, 2006, 88, 052508.
103. G. G. C. Arizaga, K. G. Satyanarayana and F. Wypych, Solid State Ionics, 2007, 178, 1143-1162.
104. A. I. Khan and D. O'Hare, Journal of Materials Chemistry, 2002, 12, 3191-3198.
105. W. Kagunya, Z. Hassan and W. Jones, Inorganic Chemistry, 1996, 35, 5970-5974.
106. P. C. Pavan, G. d. A. Gomes and J. B. Valim, Microporous and Mesoporous Materials, 1998, 21, 659-665.
107. G. R. Williams and D. O'Hare, Chemistry of Materials, 2005, 17, 2632-2640.
108. D. Shan, C. Mousty and S. Cosnier, Analytical Chemistry, 2003, 76, 178-183.
109. H. Morioka, H. Tagaya, M. Karasu, J.-i. Kadokawa and K. Chiba, Inorganic Chemistry, 1999, 38, 4211-4216.
110. R. Q. Song, A. W. Xu, B. Deng, Q. Li and G. Y. Chen, Advanced Functional Materials, 2007, 17, 296-306.
111. J. Liu, Y. Li, X. Huang, G. Li and Z. Li, Advanced Functional Materials, 2008, 18, 1448-1458.
112. Z. Xia, J. Sha, Y. Fang, Y. Wan, Z. Wang and Y. Wang, Crystal Growth & Design, 2010, 10, 2759-2765.
113. D. Yang and R. F. Frindt, Journal of Materials Research, 1996, 11, 1733-1737.
114. Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan and S. Li, Crystal Growth & Design, 2008, 8, 3010-3018.
115. Z. Xia, Y. Wang, Y. Fang, Y. Wan, W. Xia and J. Sha, The Journal of Physical Chemistry C, 2011, 115, 14576-14582.
116. X. Zong, C. Sun, H. Yu, Z. G. Chen, Z. Xing, D. Ye, G. Q. Lu, X. Li and L. Wang, The Journal of Physical Chemistry C, 2013, 117, 4937-4942.
117. H. Xu, X. Chen, S. Ouyang, T. Kako and J. Ye, The Journal of Physical Chemistry C, 2012, 116, 3833-3839.
118. F. Wang, D. Zhao, Z. Xu, Z. Zheng, L. Zhang and D. Shen, Journal of Materials Chemistry A, 2013, 1, 9132-9137.
119. I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee and W. I. Lee, Journal of Materials Chemistry, 2011, 21, 532-538.
120. E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Applied Physics Letters, 2003, 82, 3901.
121. E. Hendry, F. Wang, J. Shan, T. F. Heinz and M. Bonn, Physical Review B, 2004, 69, 081101.
122. T. Dittrich, E. A. Lebedev and J. Weidmann, Physica Status Solidi A, 1998, 165, 5-6.
123. H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 2009, 4, 380-386.
124. Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang and Y. Liu, The Journal of Physical Chemistry C, 2010, 114, 7920-7925.
125. F. Kayaci, S. Vempati, C. Ozgit-Akgun, I. Donmez, N. Biyikli and T. Uyar, Nanoscale, 2014, 6, 5735-5745.
126. Y. Huang, Y. Wei, J. Wu, C. Guo, M. Wang, S. Yin and T. Sato, Applied Catalysis B: Environmental, 2012, 123–124, 9-17.
127. R. Abe, H. Takami, N. Murakami and B. Ohtani, Journal of the American Chemical Society, 2008, 130, 7780-7781.
128. W. Wang, L. Zhang, T. An, G. Li, H.-Y. Yip and P.-K. Wong, Applied Catalysis B: Environmental, 2011, 108–109, 108-116.
129. R. Jin, W. Gao, J. Chen, H. Zeng, F. Zhang, Z. Liu and N. Guan, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 585-590.
130. S. K. Friedlander, Smoke, Dust, and Haze-Fundamentals of Aerosol Dynamics, Oxford University Press, 2000.
131. G. W. Petty, A First Course in Atmospheric Radiation, 2nd edn., Sundog Publishing 2006.
132. P. D. García, R. Sapienza, J. Bertolotti, M. D. Martín, Á. Blanco, A. Altube, L. Viña, D. S. Wiersma and C. López, Physical Review A, 2008, 78, 023823.
133. M.-C. Tsai, T.-L. Tsai, D.-B. Shieh, H.-T. Chiu and C.-Y. Lee, Analytical Chemistry, 2009, 81, 7590-7596.
134. M. C. Tsai, T. L. Tsai, C. T. Lin, R. J. Chung, H. S. Sheu, H. T. Chiu and C. Y. Lee, The Journal of Physical Chemistry C, 2008, 112, 2697-2702.
135. M. Retsch, M. Schmelzeisen, H.-J. r. Butt and E. L. Thomas, Nano Letters, 2011, 11, 1389-1394.
136. Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe and G. Cao, Physical Chemistry Chemical Physics, 2012, 14, 14982-14998.
137. A. Zenidaka, T. Honda and M. Terakawa, Applied Physics A, 2011, 105, 393-398.
138. W. S. Hummers and R. E. Offeman, Journal of the American Chemical Society, 1958, 80, 1339-1339.
139. H. Yu, R. Liu, X. Wang, P. Wang and J. Yu, Applied Catalysis B: Environmental, 2012, 111–112, 326-333.
140. P. Pichat, C. Guillard, L. Amalric, A.-C. Renard and O. Plaidy, Solar Energy Materials and Solar Cells, 1995, 38, 391-399.
141. A. Nandi and I. Chatterjee, Journal of Biosciences, 1987, 11, 435-441.
142. T.-T. Chen, I. C. Chang, M.-C. Tsai, Y.-C. Chang, M.-H. Yang, P.-C. Chen, H.-T. Chiu and C.-Y. Lee, CrystEngComm, 2014, 16, 3341-3347.
143. P. Wang, J. Wang, X. Wang, H. Yu, J. Yu, M. Lei and Y. Wang, Applied Catalysis B: Environmental, 2013, 132–133, 452-459.
144. Y. H. Ng, A. Iwase, A. Kudo and R. Amal, The Journal of Physical Chemistry Letters, 2010, 1, 2607-2612.
145. M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang and L. S. Wen, Applied Surface Science, 2000, 158, 134-140.
146. B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.-Q. Wang, W. Yan and H. Fu, The Journal of Physical Chemistry C, 2011, 115, 23718-23725.
147. Y.-G. Lin, Y.-K. Hsu, Y.-C. Chen, L.-C. Chen, S.-Y. Chen and K.-H. Chen, Nanoscale, 2012, 4, 6515-6519.
148. M. Zhu, P. Chen and M. Liu, Journal of Materials Chemistry, 2012, 22, 21487-21494.
149. Y. Zhang, Z.-R. Tang, X. Fu and Y.-J. Xu, ACS Nano, 2010, 4, 7303-7314.
150. T.-Y. Ke, C.-Y. Lee and H.-T. Chiu, Applied Catalysis A: General, 2010, 381, 109-113.
151. A. S. Milev, G. S. K. Kannangara and M. A. Wilson, Langmuir, 2004, 20, 1888-1894.
152. Q. Xie, J. Li, Q. Tian and R. Shi, Journal of Materials Chemistry, 2012, 22, 13541-13547.
153. I. C. Chang, P.-C. Chen, M.-C. Tsai, T.-T. Chen, M.-H. Yang, H.-T. Chiu and C.-Y. Lee, CrystEngComm, 2013, 15, 2363-2366.
154. M. Ocaña, R. Rodriguez-Clemente and C. J. Serna, Advanced Materials, 1995, 7, 212-216.
155. S. Cho, J.-W. Jang, A. Jung, S.-H. Lee, J. Lee, J. S. Lee and K.-H. Lee, Langmuir, 2010, 27, 371-378.
156. S. Inoue and S. Fujihara, Inorganic Chemistry, 2011, 50, 3605-3612.
157. N. Tripathy, R. Ahmad, H.-S. Jeong and Y.-B. Hahn, Inorganic Chemistry, 2011, 51, 1104-1110.