研究生: |
丁倩妤 Ting, Chien-Yu |
---|---|
論文名稱: |
以聚焦式超音波驅動包覆化療藥物微氣泡之藥物遞送以及血腦屏障之開啟於大鼠腦瘤模型上研究與治療 Delivery of drug-loaded microbubbles and disruption of blood-brain barrier by focused ultrasound in a xenograft rat glioma model |
指導教授: |
葉秩光
Yeh, Chih-Kuang |
口試委員: |
王士豪
李夢麟 劉浩澧 葉秩光 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 多形性膠質母細胞瘤 、聚焦式超音波 、微氣泡 、化學治療 、血腦屏障 |
外文關鍵詞: | glioblastoma multiforme (GBM), focused ultrasound (FUS), microbubble (MB), chemotherapy, blood-brain barrier (BBB) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多形性膠質母細胞瘤為常見之惡性腦瘤,目前臨床上常用的傳統化學治療對腫瘤的控制效果並不佳,主要來自於兩個限制因素:一為腦組織本身所具備的特殊保護構造-血腦屏障;二為化療藥物毒殺細胞的藥物毒性。使用傳統化療藥物投遞方式欲在腦瘤局部累積足夠的治療劑量,勢必須施予大劑量藥物治療,但同時會造成周遭腦組織或身體其他器官暴露於高劑量藥物中而引發極大副作用。近年來研究專注於提升血腦屏障的通透性,並證實以聚焦式超音波配合微氣泡確實可以非侵入式的將血腦屏障打開。另一方面文獻亦提出各式各樣的藥物載體,目的是包覆藥物並於體內運輸至目標區域,減少對整體的藥物暴露,另外配合對環境產生應答或是其他外界驅動方式,於局部大量釋放出藥物,提升治療的功效。
本研究的目的是以自製微氣泡利用疏水作用力以及靜電吸引力包覆脂溶性的化療舊藥亞硝氮芥(BCNU)於微氣泡脂質殼層的疏水端,作為新型的藥物載體(BCNU-MB),配合聚焦式超音波探頭的驅動,局部開啟血腦屏障,同時將包覆藥物微氣泡擊破,大量釋放出BCNU達到局部治療的功效。
研究工作首先是備置藥物載體,並且對BCNU-MB做完整的特性量測。以1-MHz 聚焦式超音波,配合最佳化的參數(0.5 MPa, duty cycle = 5 %, 照射2 min)驅動BCNU-MB的藥物釋放,於Sprague–Dawley大鼠C-6腦瘤模型上進行腫瘤治療,期望在對腦組織產生最少傷害的前提下釋放出最多的藥物。接著於正常大鼠(無腦瘤植入)上測試血腦屏障開啟的可行性,同時以高效液相層析儀配合UV偵檢器定量本研究提出之藥物釋放系統於腦組織中的藥物遞送量,並評估對正常組織的藥物毒性。最後在腫瘤細胞植入後第4天以及第5天,靜脈注射0.5 ml的BCNU-MB後施打聚焦式超音波,進行腫瘤治療,配合MRI T2-weighted影像追蹤治療效果。
結果顯示使用BCNU-MB在聚焦式超音波的協同作用下能夠提升血腦屏障通透性,並且在腦組織藥物定量分析中證實此新型藥物釋放系統比起傳統化療藥物遞送方式,確實可以在超音波照射的腦組織部位提升局部藥物的遞送量;此外,由肝臟藥物萃取實驗中反映出此藥物釋放系統可以減少5倍的肝臟藥物沉積量,顯示此系統具有降低對其他正常組織產生副作用的能力。最後在對腫瘤模型進行治療的部分,藉由MRI影像持續追蹤腫瘤的大小,結果發現此種藥物遞送方法不但可以抑制腫瘤的生長,甚至可以很顯著的使腫瘤體積縮小,達到驚人的腦瘤治療效果。
未來工作包括在包覆藥物微氣泡上修飾專一性標誌配位體,達到更精確的腫瘤標靶治療,將化療藥物更準確的遞送至病灶部位;抑或可以結合其他造影方式的對比劑例如SPIO,進一步將包覆藥物微氣泡提升成同時具備多功能的微氣泡。
Glioblastoma multiforme (GBM) is the most common and highly malignant primary brain tumor. Traditional chemotherapy for treating GBM has limitations such as systemic cytotoxic effects and poor blood-brain barrier (BBB) penetration. When sufficient amounts of chemotherapeutic agents were delivered to the tumor locations, severe systemic cytotoxic effects would be induced, and thus some studies recently focused on enhancing the permeability of BBB by using focused ultrasound (FUS) with microbubbles (MBs) to non-invasively and locally disrupt BBB. Moreover, several drug carriers and drug controlled release methods have been proposed as promising strategies to increase local drug concentrations meanwhile reducing systemic side effects.
The aim of this study is to develope a drug-loaded MB formulation (BCNU-MB) with a high loading capacity of 1,3-bis(2-chloroethyl)-1- nitrosourea (BCNU) drug, which was complexed to the lipid shell by both hydrophobic and electrostatic interactions. Note that the BCNU-MBs with FUS contained specific acoustic properties for delivering drug and locally disrupting BBB simultaneously.
BCNU-MBs were fabricated via the thin-film hydration method. The BCNU drug encapsulation efficiency was 68.01 ± 4.35 % estimated by an UV-visible spectrometer. Cultured C6 glioma cells implanted in Sprague-Dawley rats were established as tumor model. A 1-MHz FUS with 0.7 MPa pressure, 5% duty factor, and 2 min sonication were used to minimize the intracerebral hemorrhage while maximizing the drug delivery. On day 4 and 5 after the implantation of tumor cells, 0.5 ml BCNU-MBs were delivered intravenously, following the synergistic effect of FUS. BCNU accumulation in the brain and liver were analyzed by high performance liquid chromatography (HPLC) coupled with an UV detector. Tumor volumes were monitored by a series of MR T2-weighted images to follow outcomes of the treatment.
Results showed that BBB disruption could be achieved by BCNU-MB with FUS. The HPLC data showed that BCNU-MB delivery system indeed locally release more drugs at FUS-treated hemisphere brains than traditional intravenous chemotherapy drug delivery way. Besides, the BCNU-MB method performed 5-fold less deposition of BCNU in the liver compared to that in traditional chemotherapy, and the MRI images also revealed the significant changes in tumor growth between the two methods.
In the study, delivery of drug-loaded MBs and disruption of BBB by FUS in a xenograft rat glioma model can be achieved at the same time. Future works include modifying specific ligands and SPIO particles on BCNU-MBs surface for targeting therapy and as multimodality contrast agents, respectively.
[1] S.S. Brem, P.J. Bierman, H. Brem, N. Butowski, M.C. Chamberlain, E.A. Chiocca, L.M. Deangelis, R.A. Fenstermaker, A. Friedman, M.R. Gilbert, D. Hesser, L. Junck, G.P. Linette, J.S. Loeffler, M.H. Maor, M. Michael, P.L. Moots, T. Morrison, M. Mrugala, L.B. Nabors, H.B. Newton, J. Portnow, J.J. Raizer, L. Recht, D.C. Shrieve, A.K. Jr Sills, F.D. Vrionis and P.Y. Wen, “Central nervous system cancers,” J Natl Compr Canc Netw., vol. 9, pp. 352–400, 2011.
[2] E.S. Nussbaum, H.R. Djalilian, K.H. Cho and W.A. Hall, “Brain metastases. Histology, multiplicity, surgery, and survival,” Cancer, vol. 78, pp. 1781–1788, 1996.
[3] R.K. Bindal, R. Sawaya, M.E. Leavens and J.J. Lee, “Surgical treatment of multiple brain metastases,” J Neurosurg., vol. 79, pp. 210–216, 1993.
[4] D. Kondziolka, A. Patel, L.D. Lunsford, A. Kassam and J.C. Flickinger , “Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases,” Int J Radiat Oncol Biol Phys., vol. 45, pp. 427–434, 1999.
[5] A.F. Eichler and J.S. Loeffler, “Multidisciplinary Management of Brain Metastases,” Oncologist, vol. 12, pp. 884–898, 2007.
[6] D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer and P. Kleihues, “The 2007 WHO classification of tumours of the central nervous system.,” Acta Neuropathol., vol. 114, pp. 97–109, 2007.
[7] “Cancer registry annual report, 2007, Taiwan,” 行政院衛生署國民健康局癌症登記報告,2007.
[8] A. Jemal, R. Siegel, J. Xu and E. Ward, “Cancer Statistics, 2010,” CA Cancer J Clin., vol. 60, pp. 277¬¬¬–300, 2010.
[9] L. Arko, I. Katsyv, G.E. Park, W.P. Luan, J.K. Park, “Experimental approaches for the treatment of malignant gliomas,” Pharmacol Ther., vol. 128, pp. 1–36, 2010.
[10] E.I. Fomchenko and E.C. Holland, “Stem cells and brain cancer,” Exp Cell Res., vol. 306, pp. 323–329, 2005.
[11] J.T. Huse and E.C.Holland, “Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma,” Nat Rev Cancer., vol. 10, pp. 319–331, 2010.
[12] A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, C. Smigal and M.J. Thun, “Cancer Statistics, 2006,” CA Cancer J Clin., vol. 56, pp. 106–130, 2006.
[13] C. Kang, X. Yuan, Y. Zhong, P. Pu, Y. Guo, A. Albadany, S. Yu, Z. Zhang, Y. Li, J. Chang and J. Sheng, “Growth inhibition against intracranial C6 glioma cells by stereotactic delivery of BCNU by controlled release from poly(D,L-lactic acid) nanoparticles,” Technol Cancer Res Treat., vol. 8, pp. 61–70, 2009.
[14] P.Y. Chen, H.L. Liu, M.Y. Hua, H.W. Yang, C.Y. Huang, P.C. Chu, L.A. Lyu, I.C. Tseng, L.Y. Feng, H.C. Tsai, S.M. Chen, Y.J. Lu, J.J. Wang, T.C. Yen, Y.H. Ma, T. Wu, J.P. Chen, J.I. Chuang, J.W. Shin, C. Hsueh and K.C. Wei, “Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment,” Neuro Oncol., vol. 12, pp. 1050–1060, 2010.
[15] S. Mitragotri, “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nat Rev Drug Discov., vol. 4, pp. 255–260, 2005.
[16] M.S. Khil, A. Kolozsvary, M. Apple and J.H. Kim, “Increased tumor cures using combined radiosurgery and BCNU in the treatment of 9l glioma in the rat brain,” Int J Radiat Oncol Biol Phys., vol. 47, pp. 511–516, 2000.
[17] W. Vogelhuber, T. Spruss, G. Bernhardt, A. Buschauer and A. Göpferich, “Efficacy of BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of U-87 MG human glioblastoma xenografts,” Int J Pharm., vol. 238, pp. 111–121, 2002
[18] M. Westphal, D.C. Hilt, E. Bortey, P. Delavault, R. Olivares, P.C. Warnke, I.R. Whittle, J. Jääskeläinen and Z. Ram, “A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma,” Neuro Oncol., vol. 5, pp. 79–88, 2003.
[19] J.S. Lee, T.K. An, G.S. Chae, J.K. Jeong, S.H. Cho, H.B. Lee and G. Khang, “Evaluation of in vitro and in vivo antitumor activity of BCNU-loaded PLGA wafer against 9L gliosarcoma,” Eur J Pharm Biopharm., vol. 59, pp. 169–175, 2005.
[20] H.H. Engelhard, “The role of interstitial BCNU chemotherapy in the treatment of malignant glioma,” Surg Neurol., vol. 53, pp. 458–464, 2000.
[21] G.Y. Kim, B.M. Tyler, M.M. Tupper, J.M. Karp, R.S. Langer, H. Brem and M.J. Cima, “Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model,” J Control Release., vol. 123, pp. 172–178, 2007.
[22] C. Marosi, “Chemotherapy for malignant gliomas,” Wien Med Wochenschr, vol. 156, pp. 346–350, 2006.
[23] H.L. Liu, M.Y. Hua, P.Y. Chen, P.C. Chu, C.H. Pan, H.W. Yang, C.Y. Huang, J.J .Wang, T.C. Yen and K.C. Wei, “Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment,” Radiology, vol. 255, pp. 415–425, 2010.
[24] L.H. Treat, N. McDannold, N. Vykhodtseva, Y. Zhang, K. Tam and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int J Cancer., vol. 121, pp. 901–907, 2007.
[25] Y. Li, H.L. Ho Duc, B. Tyler, T. Williams, M. Tupper, R. Langer, H. Brem and M.J. Cima, “In vivo delivery of BCNU from a MEMS device to a tumor model,” J Control Release., vol. 106, pp. 138–145, 2005.
[26] BiCNU, Bristol-Myers Squibb Company, 2007.
[27] X. Xu, X. Chen, X. Xu, T. Lu, X. Wang, L. Yang and X. Jing, “BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells,” J Control Release., vol. 114, pp. 307–316, 2006.
[28] E.L. Yuh, S.G. Shulman, S.A. Mehta, J. Xie, L. Chen, V. Frenkel, M.D. Bednarski and K.C. Li, “Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model,” Radiology, vol. 234, pp. 431–437, 2005.
[29] K.T. Wheeler, V.A. Levin, D.F. Deen, “The concept of drug dose for in vitro studies with chemotherapeutic agents,” Radiat Res., vol. 76, pp. 441–458, 1978.
[30] S. Tinkov, G. Winter, C. Coester and R. Bekeredjian, “New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I--Formulation development and in-vitro characterization,” J Control Release., vol. 143, pp. 143–150, 2010.
[31] J. Kang, X. Wu, Z. Wang, H. Ran, C. Xu, J. Wu, Z. Wang and Y. Zhang, “Antitumor effect of docetaxel-loaded lipid microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors,” J Ultrasound Med., vol. 29, pp. 61–70, 2010.
[32] C.Y. Lin, T.M. Liu, C.Y. Chen, Y.L. Huang, W.K. Huang, C.K. Sun, F.H. Chang and W.L. Lin, “Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors,” J Control Release., vol. 146, pp. 291–298, 2010.
[33] S. Tinkov, C. Coester, S. Serba, N.A. Geis, H.A. Katus, G. Winter and R. Bekeredjian, “New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization,” J Control Release., vol. 148, pp. 368–372, 2010.
[34] R.L. Hong and Y.L.Tseng, “A phase II and pharmacokinetic study of pegylated liposomal doxorubicin in patients with advanced hepatocellular carcinoma,” Cancer Chemother Pharmacol., vol. 51, pp. 433–438, 2003.
[35] F.Y. Yang, W.M. Fu, R.S. Yang, H.C. Liou, K.H. Kang and W.L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med Biol., vol. 33, pp. 1421–1427, 2007.
[36] F. Wang, Y. Cheng, J. Mei, Y. Song, Y.Q. Yang, Y. Liu and Z. Wang, “Focused ultrasound microbubble destruction-mediated changes in blood-brain barrier permeability assessed by contrast-enhanced magnetic resonance imaging,” J Ultrasound Med., vol. 28, pp. 1501–1509, 2009.
[37] F. Xie, M.D. Boska, J. Lof, M.G. Uberti, J.M. Tsutsui and T.R. Porter, “Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model,” Ultrasound Med Biol., vol. 34, pp. 2028–2034, 2008.
[38] N. Vykhodtseva, N. McDannold and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics, vol. 48, pp. 279–296, 2008.
[39] W.M. Pardridge, “Blood-brain barrier drug targeting: the future of brain drug development,” Mol Interv., vol. 3, pp. 90–105, 2003.
[40] K. Hynynen, N. McDannold, N.A. Sheikov, F.A. Jolesz and N. Vykhodtseva, “Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications,” Neuroimage, vol. 24, pp. 12–20, 2005.
[41] P.J. Frinking, A. Bouakaz, J. Kirkhorn, F.J. Ten Cate and N. de Jong, “Ultrasound contrast imaging: current and new potential methods,” Ultrasound Med Biol., vol. 26, pp. 965–975, 2000.
[42] H.L. Liu, Y.Y. Wai, P.H. Hsu, L.A. Lyu, J.S. Wu, C.R. Shen, J.C. Chen, T.C. Yen and J.J. Wang, “In vivo assessment of macrophage CNS infiltration during disruption of the blood-brain barrier with focused ultrasound: a magnetic resonance imaging study,” J Cereb Blood Flow Metab., vol. 30, pp. 1–10, 2009.
[43] H.L. Liu, C.H. Pan, C.Y. Ting and M.J. Hsiao, “Opening of the blood-brain barrier by low-frequency (28-kHz) ultrasound: a novel pinhole-assisted mechanical scanning device,” Ultrasound Med Biol., vol. 36, pp. 325–335, 2010.
[44] F.Y. Yang, W.M. Fu, W.S. Chen, W.L. Yeh and W.L. Lin, “Quantitative evaluation of the use of microbubbles with transcranial focused ultrasound on blood-brain-barrier disruption,” Ultrason Sonochem., vol. 15, pp. 636–643, 2008.
[45] N. McDannold, N. Vykhodtseva and K. Hynynen, “Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index,” Ultrasound Med Biol., vol. 34, pp. 834–840, 2008.
[46] R. Kunstfeld, G. Wickenhauser, U. Michaelis, M. Teifel, W. Umek, K. Naujoks, K. Wolff and P. Petzelbauer, “Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a "humanized" SCID mouse model,” J Invest Dermatol., vol. 120, pp. 476–482, 2003.
[47] W. Xing, W.Z. Gang, Z. Yong, Z.Y. Yi, X.C. Shan and R.H. Tao, “Treatment of xenografted ovarian carcinoma using paclitaxel-loaded ultrasound microbubbles,” Acad Radiol., vol. 15, pp. 1574–1579, 2008.
[48] I. Lentacker, S.C.D. Smedta and N.N. Sanders, “Drug loaded microbubble design for ultrasound triggered delivery,” Soft Matter, vol. 5, pp. 2161–2170, 2009.
[49] N. de Jong, “Improvements of ultrasound contrast agents,” IEEE engineering in medicine and biology, vol. 15, pp. 72–82, 1996.
[50] F.Y. Yang, Y.S. Lin, K.H. Kang, T.K. Chao, “Reversible blood-brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation,” J Control Release., vol. 150, pp. 111–116, 2011.
[51] N. McDannold, N. Vykhodtseva and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound Med Biol., vol. 34, pp. 930–937, 2008.
[52] J.J. Choi, J.A. Feshitan, B. Baseri, S. Wang, Y.S. Tung, M.A. Borden, E.E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans Biomed Eng., vol. 57, pp. 145–154, 2010.
[53] R. Karshafian, P.D. Bevan, R. Williams, S. Samac and P.N. Burns, “Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability,” Ultrasound Med Biol., vol. 35, pp. 847–860, 2009.
[54] S.B. Raymond, L.H. Treat, J.D. Dewey, N.J. McDannold, K. Hynynen and B.J. Bacskai, “Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models,” PLoS One, vol. 3, pp. e2175, 2008.
[55] I. Lentacker, B. Geers, J. Demeester, S.C. De Smedt and N.N. Sanders, “Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved,” Mol Ther., vol. 18, pp. 101–108, 2010.
[56] J.L. Tyler, Y.L. Yamamoto, M. Diksic, J. Théron, J.G. Villemure, C. Worthington, A.C. Evans, W. Feindel, “Pharmacokinetics of superselective intra-arterial and intravenous [11C]BCNU evaluated by PET,” J Nucl Med., vol. 27, pp. 775–780, 1986.
[57] F.R. Hallett, J. Watton and P. Krygsman, “Vesicle sizing: Number distributions by dynamic light scattering,” Biophys J., vol. 59, pp. 357–362, 1991.
[58] M.F. Shieh, I.M. Chu, C.J. Lee, P. Kan, D.M. Hau and J.J. Shieh, “Liposomal delivery system for taxol,” J. Ferment. Bioeng., vol. 83, pp. 87–90, 1997.
[59] 陳鴻麟, “The Effect of Bubble Shape on Surfactant Diffusion and the Grinding and Dispersion of Nano-Pigment,” 國立台灣科技大學化學工程系碩士學位論文, 2005.
[60] N.Y. Rapoport, A.M. Kennedy, J.E. Shea, C.L. Scaife and K.H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J Control Release., vol. 138, pp. 268–276, 2009.
[61] M. Fan, D. Tao, R. Honaker and Z. Luo, “Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions,” Mining Science and Technology (China)., vol. 20, pp. 1–19, 2010.
[62] S. Tinkov, R. Bekeredjian, G. Winter and C. Coester, “Characterization of ultrasound-mediated destruction of drug-loaded microbubbles using an improved in vitro model,” APPL ACOUST., vol. 70, pp. 1323–1329, 2009.
[63] W.L. Nyborg, “Biological effects of ultrasound: development of safety guidelines. Part I: personal histories,” Ultrasound Med Biol., vol. 26, pp. 911–964, 2000.
[64] W.L. Nyborg, “Biological effects of ultrasound: development of safety guidelines. Part II: general review,” Ultrasound Med Biol., vol. 27, pp. 301–333, 2001.
[65] W.R. O'Brien and J.F. Zachary, “Lung damage assessment from exposure to pulsed-wave ultrasound in the rabbit, mouse, and pig,” IEEE Trans Ultrason Ferroelectr Freq Control., vol. 44, pp. 473–485, 1997.
[66] T.Y. Wang, K.Y. Lai, C.Y. Lai and P.C. Li, “A Study on Microbubble-assisted Acoustic Cavitation,” J. Med. Biol. Eng., vol. 25, pp. 165–170, 2005.
[67] M.L. Immordino, F. Dosio, L. Cattel, “Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential,” Int J Nanomedicine., vol. 1, pp. 297–315, 2006.
[68] S.M. Moghimi, J. Szebeni, “Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties,” Prog Lipid Res., vol. 42, pp. 463–478, 2003.
[69] P. Caliceti, F.M. Veronese, “Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates,” Adv Drug Deliv Rev., vol. 55, pp. 1261–1277, 2003.
[70] S.M. Moghimi, A.C. Hunter, J.C. Murray, “Long-circulating and target-specific nanoparticles: theory to practice,” Pharmacol Rev., vol. 53, pp. 283–318, 2001.
[71] T. Daemen, J. Regts, M. Meesters, M.T. Ten Kate, I.A.J.M. Bakker-Woudenberg , G.L. Scherphof, “Toxicity of doxorubicin entrapped within long-circulating liposomes,” J Control Release., vol. 44, pp. 1–9, 1997.
[72] “標靶治療與電腦刀腫瘤治療,” 奇美醫院電腦刀中心http://www.chimei-ckc.com.tw/front/bin/ptdetail.phtml?Part=Target-therapy
[73] D. Melisi, T. Troiani, V. Damiano, G. Tortora and F. Ciardiello, “Therapeutic integration of signal transduction targeting agents and conventional anti-cancer treatments,” Endocr Relat Cancer., vol. 11, pp. 51–68, 2004.
[74] N. Deshpande, Y. Ren, K. Foygel, J. Rosenberg and J.K. Willmann, “Tumor angiogenic marker expression levels during tumor growth: longitudinal assessment with molecularly targeted microbubbles and US imaging,” Radiology, vol. 258, pp. 804–811, 2011.
[75] J. Folkman, “What is the evidence that tumors are angiogenesis dependent?,” J Natl Cancer Inst., vol. 82, pp. 4–6, 1990.
[76] A. Kiselyov, K.V. Balakin and S.E. Tkachenko, “VEGF/VEGFR signalling as a target for inhibiting angiogenesis,” Expert Opin Investig Drugs., vol. 16, pp. 83–107, 2007.
[77] G. Korpanty, J.G. Carbon, P.A. Grayburn, J.B. Fleming and R.A. Brekken, “Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature,” Clin Cancer Res., vol. 13, pp. 323–330, 2007.
[78] A. Della Martina, E. Allémann, T. Bettinger, P. Bussat, A. Lassus, S. Pochon and M. Schneider, “Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing GP IIb/IIIa - characterization and in vitro testing,” Eur J Pharm Biopharm., vol. 68, pp. 555–564, 2008.
[79] Jr V.T. DeVita, “The James Ewing lecture. The relationship between tumor mass and resistance to chemotherapy. Implications for surgical adjuvant treatment of cancer,” Cancer, vol. 51, pp. 1209–1220, 1983.
[80] M. Franco, S. Man, L. Chen, U. Emmenegger, Y. Shaked, A.M. Cheung, A.S. Brown, D.J. Hicklin, F.S. Foster and R.S. Kerbel, “Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia,” Cancer Res., vol. 66, pp. 3639–3648, 2006.
[81] C.C. Shen, S.Y. Su, C.H. Cheng and C.K. Yeh, “Dual-high-frequency ultrasound excitation on microbubble destruction volume,” Ultrasonics, vol. 50, pp. 698–703, 2010.