簡易檢索 / 詳目顯示

研究生: 胡將遠
Hu, Chiang-Yuan
論文名稱: 微波激發受控相位閘於超導量子電路之實現
Realization of a Microwave-Activated Conditional Phase (MAP) Gate on Superconducting Circuits
指導教授: 林晏詳
Lin, Yen-Hsiang
口試委員: 陳正中
Chen, Jeng-Chung
許耀銓
Hoi, Io-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 47
中文關鍵詞: 量子邏輯閘雙量子位元邏輯閘超導量子位元3D transmon微波激發相位閘
外文關鍵詞: Quantum logic gate, Two-qubit gate, Superconducting qubit, 3D transmon, Microwave-activated phase gate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來超導電路已經成為實行量子計算的方法中熱門的選擇之一,尤其因為其製程與控制都是基於已經成熟的技術,使得量子位元的參數具有可調性、容易擴增位元數,並且可以微波脈衝控制。另外,為了達到高精準度的量子計算,我們需要使用具有高同調性的量子位元(例如transmon 量子位元),而三維的架構也能藉由降低基板的介電損耗來提升同調時間。
    這篇論文將以重現參考文獻中[1]的微波激發相位邏輯閘為主軸。其中使用了兩個tranmson 量子位元,令它們和同一個空腔的基頻共振模耦合用以讀取狀態,而兩個量子位元的特定激發態能階則被調整至相近的能量,並以非共振的微波致使量子位元產生條件性的條件性的相位累積。同時這項實驗也將為實驗室未來的研究奠基,其中所有樣品的設計、製程和量測都是在台灣完成,而實驗內容也將幫助我們學習量子位元的參數調整以及微波控制。
    實驗結果展示了我們製作量子位元樣品的能力,以及量測樣品參數的結果,而從實現微波激發相位閘的實驗我們也推斷出當參數調整得當時,可以得到只需要520奈秒操作時間的相位閘。最後,這項實驗中相關的知識和基礎將作為日後進行fluxonium位元微波控制邏輯閘的基石,幫助將來的研究發展。


    Superconducting circuits is one of the most popular candidates for quantum computation in recent years. Based on matured fabrication and microwave technologies, the main advantages are engineerable qubit parameters, highly scalability, and the ability of controlling qubit states by fast microwave pulses. To achieve high-fidelity quantum computation, high coherence qubits (for example, transmon qubits) are required. Here we chose 3D cavity architecture to reduce dielectric loss on the interfaces to improve the coherence.
    In this thesis we aimed to reproduce a microwave-activated phase (MAP) gate presented in Ref.[1]. Two 3D transmons are coupled to a single cavity mode for readout. Higher energy levels of the transmon are brought closed together such that an off-resonance drive induces a conditional phase accumulation. In this experiment all the design, fabrication, and measurement were done in Hsinchu, Taiwan. This experience helps us building up knowledge, experience and intuition of qubit design and microwave control.
    Our result showed that we can fabricate and characterize the samples, as well as realize a microwave-activated conditional phase gate of a 520 ns gate time if the parameters are fine tuned. Besides, common knowledge involved in the experiment will be taken as a stepping stone for our future research on fluxonium two-qubit gates via microwave control.

    誌謝 摘要 Abstract 1. Introduction-----------------------------------------------1 2. Principles of Microwave-Activated Phase Gate Experiments---3 3. Instruments and Devices-----------------------------------23 4. Result and Discussion-------------------------------------31 5. Summary and outlook---------------------------------------43 Reference----------------------------------------------------45

    [1] T. Noh, G. Park, S.-G. Lee, W. Song, and Y. Chong, “Construction of controlled-not gate based on microwave-activated phase (map) gate in two transmon system,” Scientific re-ports, vol. 8, no. 1, pp. 1–9, 2018.
    [2] R. P. Feynman, “Simulating physics with computers,” in Feynman and computation, pp. 133–153, CRC Press, 2018.
    [3] P. Benioff, “The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines,” Journal of statistical physics, vol. 22, no. 5, pp. 563–591, 1980.
    [4] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Pro-ceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 439, no. 1907, pp. 553–558, 1992.
    [5] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science, pp. 124–134, Ieee, 1994.
    [6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., “Quantum supremacy using a programmable supercon-ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.
    [7] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. Johnson,
    M. Reagor, L. Frunzio, L. I. Glazman, et al., “Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture,” Physical Review Letters, vol. 107, no. 24, p. 240501, 2011.
    [8] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: Single cooper-pair circuit free of charge offsets,” Science, vol. 326, no. 5949, pp. 113–116, 2009.
    [9] L. B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N. Grabon, and V. E. Manucharyan, “High-coherence fluxonium qubit,” Physical Review X, vol. 9, no. 4, p. 041041, 2019.
    [10] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.
    [11] N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Physical Review, vol. 78, no. 6, p. 695, 1950.
    [12] E. L. Hahn, “Spin echoes,” Physical review, vol. 80, no. 4, p. 580, 1950.
    [13] S. Rasmussen, K. Christensen, S. Pedersen, L. Kristensen, T. Bækkegaard, N. Loft, and
    N. Zinner, “Superconducting circuit companion—an introduction with worked examples,” PRX Quantum, vol. 2, no. 4, p. 040204, 2021.
    [14] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the cooper pair box,” Physical Review A, vol. 76, no. 4, p. 042319, 2007.
    [15] V. B. Braginsky and F. Y. Khalili, “Quantum nondemolition measurements: the route from toys to tools,” Reviews of Modern Physics, vol. 68, no. 1, p. 1, 1996.
    [16] N. V. Vitanov, T. F. Gloger, P. Kaufmann, D. Kaufmann, T. Collath, M. T. Baig, M. Jo-hanning, and C. Wunderlich, “Fault-tolerant hahn-ramsey interferometry with pulse se-quences of alternating detuning,” Physical Review A, vol. 91, no. 3, p. 033406, 2015.
    [17] D. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Girvin, and
    R. Schoelkopf, “ac stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field,” Physical Review Letters, vol. 94, no. 12, p. 123602, 2005.
    [18] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, “Simple pulses for elimi-nation of leakage in weakly nonlinear qubits,” Physical review letters, vol. 103, no. 11,
    p. 110501, 2009.
    [19] J. M. Chow, J. M. Gambetta, A. W. Cross, S. T. Merkel, C. Rigetti, and M. Steffen, “Microwave-activated conditional-phase gate for superconducting qubits,” New Journal of Physics, vol. 15, no. 11, p. 115012, 2013.
    [20] L. B. Nguyen, Toward the Fluxonium Quantum Processor. PhD thesis, University of Maryland, College Park, 2020.
    [21] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Optimized driving of superconducting artificial atoms for improved single-qubit gates,” Physical Review A, vol. 82, no. 4, p. 040305, 2010.
    [22] A. Sears, A. Petrenko, G. Catelani, L. Sun, H. Paik, G. Kirchmair, L. Frunzio, L. Glazman,
    S. Girvin, and R. Schoelkopf, “Photon shot noise dephasing in the strong-dispersive limit of circuit qed,” Physical Review B, vol. 86, no. 18, p. 180504, 2012.
    [23] D. M. Pozar, Microwave engineering. John wiley & sons, 2011.
    [24] M. Reed, L. DiCarlo, B. Johnson, L. Sun, D. Schuster, L. Frunzio, and R. Schoelkopf, “High-fidelity readout in circuit quantum electrodynamics using the jaynes-cummings nonlinearity,” Physical review letters, vol. 105, no. 17, p. 173601, 2010.
    [25] L. S. Bishop, E. Ginossar, and S. Girvin, “Response of the strongly driven jaynes-cummings oscillator,” Physical review letters, vol. 105, no. 10, p. 100505, 2010.
    [26] C. Ting, “Study of qubit-cavity and qubit-qubit interaction of superconducting qubits,” Master thesis, National Yang Ming Chiao Tung University, (2021).
    [27] K. Kumar, A. Vepsäläinen, S. Danilin, and G. Paraoanu, “Stimulated raman adiabatic passage in a three-level superconducting circuit,” Nature communications, vol. 7, no. 1, pp. 1–6, 2016.
    [28] Q. Ficheux, L. B. Nguyen, A. Somoroff, H. Xiong, K. N. Nesterov, M. G. Vavilov, and
    V. E. Manucharyan, “Fast logic with slow qubits: microwave-activated controlled-z gate on low-frequency fluxoniums,” Physical Review X, vol. 11, no. 2, p. 021026, 2021.
    [29] H. Xiong, Q. Ficheux, A. Somoroff, L. B. Nguyen, E. Dogan, D. Rosenstock, C. Wang, K. N. Nesterov, M. G. Vavilov, and V. E. Manucharyan, “Arbitrary controlled-phase gate on fluxonium qubits using differential ac stark shifts,” Physical Review Research, vol. 4, no. 2, p. 023040, 2022.
    [30] K. N. Nesterov, Q. Ficheux, V. E. Manucharyan, and M. G. Vavilov, “Proposal for entan-gling gates on fluxonium qubits via a two-photon transition,” PRX Quantum, vol. 2, no. 2,
    p. 020345, 2021.

    QR CODE