研究生: |
趙銘崧 Chao, Ming Sung |
---|---|
論文名稱: |
高靈敏超短中紅外光脈衝量測之修正場自相關干涉量測法 High-sensitivity ultrashort mid-infrared pulse characterization by modified interferometric field autocorrelation |
指導教授: |
楊尚達
Yang, Shang Da |
口試委員: |
孔慶昌
Kung, Andy 項維巍 Hsiang, Wei Wei |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 中紅外光 、超短脈衝 、脈衝量測 |
外文關鍵詞: | mid-infrared, ultrashort pulse, pulse characterization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們展示了由修正場自相關干涉量測法”modified interferometric field autocorrelation (MIFA)”實現的高靈敏超短中紅外光脈衝的量測。在脈衝量測領域中,中紅外光脈衝的量測是一個新穎的議題。藉由修正場自相關干涉量測法,我們提出43赫茲、~100飛秒、3.3微米的8.9皮焦耳脈衝頻譜相位取回。因此,我們在中紅外光脈衝量測達到一個3×10^-2 W^2的靈敏度。我們的實驗架構簡單,只包含了一個麥克森干涉儀、一個266微米的硒化银镓(AgGaSe2)晶體以及一個帶有熱電製冷砷化銦鎵(InGaAs)點偵測器的自製光譜儀,此架構已經足以應用於20飛秒(1.8個週期)的3.3微米脈衝量測。我們量測系統的真確性,藉由與模擬和頻域分辨光學開關” frequency-resolved optical gating (FROG)” 的量測結果對一塊4毫米厚的鍺(Ge)玻片所提供的頻譜相位比較後,得到驗證。本系統的重複量測性,也藉由數個獨立實驗資料對同一個頻譜項為調變式的解析得到驗證。本量測系統提供(1)簡單的架構、(2)高靈敏度以及(3)代數演算法,使得修正場自相關干涉量測法是為一個絕佳的脈衝量測技術。在本論文中,此方法成功被運用在3.3微米的中紅外光脈衝量測,藉此,也進一步展現了它用來量測更長波長脈衝的潛力。
In this thesis, we demonstrate a high-sensitivity characterization of ultrashort mid-infrared pulse by a modified interferometric field autocorrelation (MIFA) method. MIR pulse measurement is a novel field in pulse measurement. We report on spectral phase retrieval of 43 MHz, ~100 fs, 3.3 μm pulses at energies down to 8.9 pJ by MIFA. Accordingly, a sensitivity of 3×10^-2 W^2 is achieved in the field of MIR pulse measurement. The simple setup consists of a Michelson interferometer, a 266-μm-thick AgGaSe2 crystal, and a homemade spectrometer with a thermoelectrically cooled InGaAs point detector, which is readily applicable to measuring a 20 fs (1.8 cycles) pulse at 3.3 μm. The feasibility is verified by comparing with the results obtained by simulation and frequency-resolved optical gating for the spectral phase modulation because of a 4-mm-thick Germanium plate. The reproducibility is tested by resolving the spectral phase modulation with several individual raw data. MIFA is a desirable pulse characterization technique because of (1) simplicity of configuration, (2) high sensitivity, and (3) algebraic data retrieval algorithm. The method has successfully characterized MIR pulses at 3.3 μm, exhibiting the potential in measuring pulses with longer wavelength.
1. M.-C. Chen, C. Mancuso, C. Hernández-García, F. Dollar, B. Galloway, D. Popmintchev, P.-C. Huang, B. Walker, L. Plaja, A. A. Jaroń-Becker, A. Becker, M. M. Murnane, H. C. Kapteyn, and T. Popmintchev, "Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers," Proc. Natl. Acad. Sci. 111, E2361–E2367 (2014).
2. Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, "Observation of Floquet-Bloch States on the Surface of a Topological Insulator," Science 342, 453–457 (2013).
3. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," Proc. Natl. Acad. Sci. 104, 14197–14202 (2007).
4. K. F. Lee, K. J. Kubarych, A. Bonvalet, and M. Joffre, "Characterization of mid-infrared femtosecond pulses [Invited]," JOSA B 25, A54–A62 (2008).
5. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm," JOSA B 17, 2086–2094 (2000).
6. C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, "Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared," Appl. Phys. Lett. 85, 3360 (2004).
7. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, "Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating," Opt. Lett. 25, 1478–1480 (2000).
8. M. Tsubouchi and T. Momose, "Cross-correlation frequency-resolved optical gating for mid-infrared femtosecond laser pulses by an AgGaGeS 4 crystal," Opt. Lett. 34, 2447–2449 (2009).
9. T. Fuji and T. Suzuki, "Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air," Opt. Lett. 32, 3330–3332 (2007).
10. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, "Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer," Opt. Lett. 30, 1228–1230 (2005).
11. N. Tolstik, E. Sorokin, and I. T. Sorokina, "Kerr-lens mode-locked Cr:ZnS laser," Opt. Lett. 38, 299 (2013).
12. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, "Broadly tunable femtosecond Tm: Lu 2 O 3 ceramic laser operating around 2070 nm," Opt. Express 20, 19349–19354 (2012).
13. Haifeng Wang and A. M. Weiner, "A femtosecond waveform transfer technique using type II second harmonic generation," IEEE J. Quantum Electron. 40, 937–945 (2004).
14. P. K. Bates, O. Chalus, and J. Biegert, "Ultrashort pulse characterization in the mid-infrared," Opt. Lett. 35, 1377–1379 (2010).
15. C. Ventalon, J. M. Fraser, J.-P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, "Generation and complete characterization of intense mid-infrared ultrashort pulses," JOSA B 23, 332–340 (2006).
16. K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, C.-J. Lai, G. Cirmi, A. Sell, E. Granados, P. Keathley, and F. X. Kärtner, "High-energy, phase-stable, ultrabroadband kHz OPCPA at 21 μm pumped by a picosecond cryogenic Yb:YAG laser," Opt. Express 19, 15538 (2011).
17. C.-S. Hsu, H.-C. Chiang, H.-P. Chuang, C.-B. Huang, and S.-D. Yang, "Forty-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation," Opt. Lett. 36, 2611 (2011).
18. C.-S. Hsu, Y.-H. Lee, A. Yabushita, T. Kobayashi, and S.-D. Yang, "Spectral phase retrieval of 8 fs optical pulses at 600 nmby using a collinear autocorrelator with 300-μm-thick lithium triborate crystals," Opt. Lett. 36, 2041–2043 (2011).
19. C.-T. Weng, A. Kung, and S.-D. Yang, "High-sensitivity spectral phase retrieval of 7.2 fs pulse by shaper-assisted modified interferometric field autocorrelation," in CLEO: Science and Innovations (Optical Society of America, 2014), p. JTu4A–84.
20. P. R. Griffiths and J. A. D. Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, 2007).
21. D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," Quantum Electron. IEEE J. Of 29, 571–579 (1993).
22. G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. Krumbügel, J. N. Sweetser, R. Trebino, and others, "Measurement of 10-fs laser pulses," Sel. Top. Quantum Electron. IEEE J. Of 2, 575–585 (1996).
23. I. Amat-Roldán, I. Cormack, P. Loza-Alvarez, E. Gualda, and D. Artigas, "Ultrashort pulse characterisation with SHG collinear-FROG," Opt. Express 12, 1169–1178 (2004).
24. G. Stibenz and G. Steinmeyer, "Interferometric frequency-resolved optical gating," Opt. Express 13, 2617–2626 (2005).
25. K. W. DeLong, B. Kohler, K. Wilson, D. N. Fittinghoff, and R. Trebino, "Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections," Opt. Lett. 19, 2152–2154 (1994).
26. K. W. DeLong and R. Trebino, "Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating," JOSA A 11, 2429–2437 (1994).
27. S. Linden, J. Kuhl, and H. Giessen, "Amplitude and phase characterization of weak blue ultrashort pulses by downconversion," Opt. Lett. 24, 569–571 (1999).
28. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792 (1998).
29. C. Dorrer, "Influence of the calibration of the detector on spectral interferometry," J. Opt. Soc. Am. B 16, 1160 (1999).
30. C. Dorrer, P. Londero, and I. A. Walmsley, "Homodyne detection in spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 26, 1510–1512 (2001).
31. S.-D. Yang, H. Miao, Z. Jiang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, "Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO 3 waveguides," Appl. Opt. 46, 6759–6769 (2007).
32. S.-D. Yang, C.-S. Hsu, S.-L. Lin, H. Miao, C.-B. Huang, and A. M. Weiner, "Direct spectral phase retrieval of ultrashort pulses by double modified one-dimensional autocorrelation traces," Opt. Express 16, 20617–20625 (2008).
33. B.-W. Tsai, S.-Y. Wu, C. Hu, W.-W. Hsiang, and Y. Lai, "Subfemtosecond hybrid synchronization between ultrafast Yb and Er fiber laser systems by controlling the relative injection timing," Opt. Lett. 38, 3456 (2013).
34. Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3 edition (McGraw-Hill Education, 2009).
35. D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera, "Noise sensitivity in frequency-resolved optical-gating measurements of ultrashort pulses," JOSA B 12, 1955–1967 (1995).
36. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, "Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating," Opt. Express 11, 68–78 (2003).
37. www.rp-photonics.com