簡易檢索 / 詳目顯示

研究生: 林孟涵
Lin, Meng-Han
論文名稱: 結合拋棄式滴管內APDC/MIBK微萃取系統與雷射剝蝕耦合電漿質譜儀分析水樣中之鉛鎘元素
Combining APDC/MIBK microextraction in a pipette with LA-ICP-MS for analyzing Pb and Cd in water samples
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 王清海
袁明程
李振弘
黃素珍
王竹方
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 68
中文關鍵詞: 拋棄式滴管微萃取系統雷射剝蝕感應耦合電漿質譜儀
外文關鍵詞: APDC/MIBK
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對高基質背景的樣品溶液,使用APDC – MIBK系統微萃取,搭配雷射剝蝕結合感應耦合電漿質譜儀 ( LA -ICP-MS ) 分析,偵測鎘和鉛的訊號。本文提出的分析方法有幾個優點強調,第一:由於雷射剝蝕感應耦合電漿的可偵測小體積樣品之優點,在整個分析過程中待測水體只需4毫升體積。第二:藉由300微升APDC敖合劑與待測水體中微量金屬離子形成錯合物,具有排除鹽類與其他基質之效果,特別有利於海水樣品偵測。第三:待測樣品藉由200微升MIBK有機溶劑達到濃縮效果,有利降低偵測極限。第四:本篇實驗環境使用可拋棄式滴管,費用低廉,操作容易,且滴管的柔軟可塑性使我們更容易在實驗過程中吸取到有機層,整個萃取過程也僅需要15分鐘即可完成。第五:最後萃取過金屬離子的有積層,只需取出0.1微升體積至於基板(本文選擇透明塑膠片)上進行乾燥,就可以送入雷射剝蝕感應耦合電漿質譜儀中進行偵測,具有良好的回收率與線性。
    回收率方面,從含有鎘平均濃度為每公升3.1微克和鉛每公升9.3微克的水標準樣品中 ( NIST 1640 ),得到的分析回收率分別為95 ±3 %和104 ±4 %。偵測極限分別為鎘每公升0.6微克的和鉛每公升0.9微克。在複雜的基質溶液中如海水,相應的檢測限分別為鎘每公升19.42微克,鉛每公升8.57微克。此外,我們也預期未來將微萃取系統更換為其他特定的螯合試劑,可能可以達到更高的選擇性。


    This paper demonstrated a highly matrix-tolerant analytical method by using a combination of ammonium pyrrolidine dithiocarbamate/methyl isobutyl ketone (APDC-MIBK) microextraction and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), for Cd and Pb determination. Several advantages of proposed analytical method are emphasized herein. First, it took only 200 µL of organic solvent throughout the entire analysis process, with enhancement factors as high as 25. At the same time, recoveries from replicate analyses of natural water [NIST 1640(a)] containing mean concentrations of 3.1 μg Cd L–1 and 9.3 μg Pb L–1 were 95 ± 3 and 104 ± 4%, respectively. The corresponding detection limits were 0.6 μg L–1 for Cd and 0.9 μg L–1 for Pb. Second, it was capable of analyzing solutions containing complicated matrix such as seawater. Corresponding detection limits in seawater were 19.42 μg L–1 for Cd and 8.57 μg L–1 for Pb. Furthermore, a higher selectivity can be possible when replacing APDC with other specific chelating reagents.

    Content…………………………………………………………………I 謝誌……………………………………………………………………II List of Figures……………………………………………………III List of Tables………………………………………………………IV Abstract………………………………………………………………V 中文摘要………………………………………………………………VI 縮寫對照表……………………………………………………………VII Chapter 1 Introduction………………………………………………01 Chapter 2 Literature review…………………………………………5 Chapter 3 Experimet detail…………………………………………20 3.1 Reagent and Materials..………………………………………20 3.2 Instrument…………………………………………………………22 3.3 Principal of LA-ICP-MS……………………………………24 3.3.1 Laser ablation system………………………………………24 3.3.2Inductively coupled plasma mass spectrometry (ICP-MS)…………………………………………………………………26 3.4 Experimental……………………………………………………………28 Chapter 4 Results and discussion…………………………………32 4.1 Effect of pH………………………………………………………32 4-2 Calibration curve establishment and application………54 4-3 further improvement……………………………………………59 Chapter 5 Conclusion………………………………………………………………63 References………………………………………………………………64

    [1] Iraji A, Afzali D, Mostafavi A, Fayazi M. Ultrasound-assisted emulsification microextraction for separation of trace amounts of antimony prior to FAAS determination, Microchim Acta 2012; 176: 185–192.

    [2] Meeravali NN, Kumar SJ. Determination of Cd, Pb, Cu, Ni and Mn in effluents and natural waters by a novel salt induced mixed-micelle cloud point extraction using ETAAS, Anal Methods 2012; 4: 2435–2440.

    [3] Shaha F, Kazia TG, Afridi HI, Naeemullah, Arain MB, Baig JA. Cloud point extraction for determination of lead in blood samples of children, using different ligands prior to analysis by flame atomic absorption spectrometry: A multivariate study, J Hazard Mater 2011; 192: 1132–1139.

    [4] Beiraghi A, Babaee S, Roshdi M. Simultaneous preconcentration of cadmium, cobalt and nickel in water samples by cationic micellar precipitation and their determination by inductively coupled plasma-optical emission spectrometry, Microchem J 2012; 100: 66–71.

    [5] Tehrani MS, Azar PA, Husain SW, Shafaei F. Dispersive liquid-liquid microextraction of Cr(VI) in water and hair samples by electrothermal atomic absorption spectrometry, Asian J Chem 2010; 22: 6302–6310.

    [6] Zeng CJ, Lin Y, Zhou N, Zheng TJ, Zhang W. Room temperature ionic liquids enhanced the speciation of Cr(VI) and Cr(III) by hollow fiber liquid phase microextraction combined with flame atomic absorption spectrometry, J Hazard Mater 2012; 237: 365–370.

    [7] Bendicho C, Lavilla I, Pena-Pereira F, Romero V. Green chemistry in analytical atomic spectrometry: A review, J Anal At Spectrom 2012; 27: 1831–1857.

    [8] Moradi M, Yamini Y. Surfactant roles in modern sample preparation techniques: A review, J Sep Sci 2012; 35; 2319–2340.

    [9] Batrusaitis J, Chen HH, Rubasinghege G, Grassian VH. Heterogeneous atmospheric chemistry of lead oxide particles with nitrogen dioxide increases lead solubility: Environmental and health implications, Environ Sci Technol 2012; 46: 12806–12813.

    [10] Wang TH, Li NH, Wei YY, Teng SP. Desorption of cesium from granite under various aqueous conditions, Appl Radio Isotope 2010; 68: 2140–2146.

    [11] Howard DL, de Jonge MD, Lau D, Hay D, Varcoe-Cocks M, Ryan CG, Kirkham R, Moorhead G, Paterson D, Thurrowgood D. High-definition X-ray fluorescence elemental mapping of paintings, Anal Chem 2012; 84: 3278–3286.

    [12] West M, Ellis AT, Potts PJ, Streli C, Vanhoof C, Wegrzynek D, Wobrauschek P. Atomic spectrometry update: X-ray fluorescence spectrometry, J Anal At Spectrom 2011; 26: 1919–1963.

    [13] Gannoun A, Boyet M, El Goresy A, Devouard B. REE and actinide microdistribution in Sahara 97072 and ALHA77295 EH3 chondrites: A combined cosmochemical and petrologic investigation, Geochim Cosmochim Acta 2011; 75: 3269–3289.

    [14] Cerqueira B, Vega FA, Serra C, Silva LFO, Andrade ML. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: A preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon surfaces, J Hazard Mater 2011; 195: 422–431.

    [15] Wang TH, Hsieh HA, Hsieh YK, Chiang CS, Sun YC, Wang CF. The fate and in vivo biodistribution of CdSe quantum dots in rat tissues: A laser ablation inductively coupled plasma mass spectrometry study, Anal Bioanal Chem 2012; 404: 3025–3036.

    [16] Hu XZ, Wu JH, Feng YQ. Molecular complex-based dispersive liquid–liquid microextraction: Analysis of polar compounds in aqueous solution, J Chromatogr A 2010; 1217: 7010–7016.

    [17] Sun YL, Sun M. Determination of 42 trace elements in seawater by inductively coupled plasma mass spectrometry after APDC chelate co-precipitation combined with iron, Anal Lett 2007; 40: 2391–2404.

    [18] Brooks RR, Presley BJ, Kaplan IR, “APDC-MIBK extraction system for the determination of trace elements in saline waters by atomic-absorption spectrophotometry”, Talanta, 1967 Jul;14(7):809-16

    [19] Dellien I, Persson L, “Effect of hydrogen-ion concentration on the extraction of cobalt, nickel, cadmium and lead with APDC/MIBK: time stability of the extracts”, Talanta, 1979 Dec;26(12):1101-4

    [20] Matsumoto H, “Microdetermination of lead in hair samples by graphite-tube atomic absorption spectrophotometry after oxine-MIBK and APDC-MIBK extraction”, Sangyo Igaku, 1982 May;24(3):298-304.

    [21] Minczewski J, Chwastowska J, Dybczynski R, “Separation and preconcentration methods in inorganic trace analysis”, 1982, Ellis Horwood Ltd., England.

    [22] Meeravali NN, Reddy MA, Kumar SJ, “Cloud point extraction of trace metals from seawater and determination by electrothermal atomic absorption spectrometry with iridium permanent modifier”, Anal Sci, 2007 Mar;23(3):351-6.

    [23] Ewa K, Shih G, Quiliam DN, Morton J, Magee SR. Mercury, lead, and cadmium in umbilical cord blood, J Environ Health 2013; 75: 38–43.

    [24] Zachariadis GA, Rosenberg E. Speciation analysis of triethyl-lead and tributyl-tin compounds in human urine by liquid–liquid extraction and gas chromatography microwave-induced plasma atomic emission detection, J Sep Sci 2013; 35: 1132–1137.

    [25] Alqadami AA, Abdalla MA, Alothman ZA, Omer K. Application of solid phase extraction on multiwalled carbon nanotubes of some heavy metal ions to analysis of skin whitening cosmetics using ICP-AES, Int J Environ Res Public Health 2013; 10: 361–374.

    [26] Bakırdere S, Yaroğlu T, Tırık N, Demiröz M, Kemal Fidan A, Maruldalı O, Karaca A. Determination of As, Cd, and Pb in tap water and bottled water samples by using optimized GFAAS system with Pd-Mg and Ni as matrix modifiers, J Spectrosc 2013; 824817

    [27] Figueiredo-Filho LCS, Janegitz BC, Fatibelilo-Filho O, Marcolino-Junior KH, Banks CE. Inexpensive and disposable copper mini-sensor modified with bismuth for lead and cadmium determination using square-wave anodic stripping voltammetry, Anal Methods 2013; 5: 202–207.

    [28] Tufekci M, Bulut VN, Elvan H, Ozdes D, Soylak M. Determination of Pb(II), Zn(II), Cd(II), and Co(II) ions by flame atomic absorption spectrometry in food and water samples after preconcentration by coprecipitation with Mo(VI)-diethyldithiocarbamate, Environ Monit Assess 2013; 185: 1107–1115.

    [29] Er C, Senkal BF, Yamen M. Determination of lead in milk and yoghurt samples by solid phase extraction using a novel aminothioazole-polymeric resin, Food Chem 2013; 137: 55–61.

    [30] Lu Y, Li X, Wang GK, Tang W. A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides, Biosens Bioelectron 2013; 39: 231–235.

    [31] Kocot K, Zawisza B, Sitko R. Dispersive liquid–liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry, Spectrochim Acta B: Atomic Spectro 2012; 73: 79–83

    [32] Kocot K, Zawisza B, Margui E, Queralt I, Hidalgo M, Sitko R. Dispersive micro solid-phase extraction using multiwalled carbon nanotubes combined with portable total-reflection X-ray fluorescence spectrometry for the determination of trace amounts of Pb and Cd in water samples, J Anal Atomic Spectro 2013; 28: 736-742.

    [33] Jahromi EZ, Bidari A, Assadi Y, Milani Hosseini MR, Jamali MR. Dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometry: Ultra trace determination of cadmium in water samples, Anal Chim Acta 2007; 585: 305-311.

    [34] Silva ED, Correia LO, dos Santos LO, Vieira, EVD, Lemos VA. Dispersive liquid-liquid microextraction for simultaneous determination of cadmium, cobalt, lead and nickel in water samples by inductively coupled plasma optical emission spectrometry, Microchim Acta 2012; 178: 269-275.

    [35] Teresa Pena M, Vecino-Bello X, Carmen Casais MC, Carmen Mejuto M, Cela R. Optimization of a dispersive liquid–liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples, Anal Bioanal Chem 2012; 402: 1679–1695.

    [36] Ye G, Bai FF, Wei JC, Wang JC, Chen J. Novel polysiloxane resin functionalized with dicyclohexano-18-crown-6 (DCH18C6): Synthesis, characterization and extraction of Sr(II) in high acidity HNO3 medium, J Hazard Mater 2012; 225: 8–14.

    [37] Boda A, Sheikh MA. Density functional theoretical investigation of remarkably high selectivity of the Cs+ ion over the Na+ ion toward macrocyclic hybrid calix-bis-crown ether, J Phys Chem A 2012; 116: 8615–8623.

    [38] Ebert D, Bhushan B. Durable lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles, J Colloid Interface Sci 2012; 368: 584–591.

    [39] Xu LG, He JH. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles, Langmuir 2012; 28: 7512–7518.

    [40] Hsieh HF, Chen YH, Wang CF. A magnesium hydroxide preconcentration/matrix reduction method for the analysis of rare earth elements in water samples using laser ablation inductively coupled plasma mass spectrometry, Talanta 2011; 85: 983–990.

    [41] Wang TH, Li MH, Teng SP. Bridging the gap between batch and column experiments: A case study of Cs adsorption on granite under high solid/liquid ratio, J Hazard Mater 2009; 161: 409–415.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE