簡易檢索 / 詳目顯示

研究生: 黃旆齊
Huang, Pei-Chi
論文名稱: 對孤立高次諧波脈衝進行極化控制
Polarization Control of Isolated High-harmonic Pulses
指導教授: 陳明彰
Chen, Ming-Chang
口試委員: 孔慶昌
Kung, Andrew H.
江進福
Jiang, Tsin-Fu
顧逸霞
Ku, Yi-Sha
羅志偉
Luo, Chih-Wei
朱旭新
Chu, Hsu-Hsin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 104
中文關鍵詞: 超快光學高次諧波產生孤立阿秒脈衝埃秒脈衝極化控制
外文關鍵詞: ultrafast optics, high harmonic generation, isolated attosecond pulses, attosecond pulses, polarization control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 飛秒雷射驅動的高次諧波所產生的阿秒脈衝能夠捕獲分子和材料中最快的動態。然而,受限於高次諧波生成原理,到目前為止我們僅能產生線性極化態的孤立阿秒脈衝,而限制了可以探索的物理範圍。
    在本論文中,我們首先解釋傳統高次諧波生成原理,並描述其所面臨的問題與限制。接著回顧近期的進展,包含如何產生線性極化的孤立阿秒脈衝,和如何產生橢圓或圓極化高次諧波阿秒脈衝序列等相關發表。最後,我們藉由全固態超連續譜技術MPC同時產生兩個極化反向旋轉的超短脈衝,將其做為激發源,在非共線聚焦的架構下,首次實現可以任意控制極化的孤立阿秒脈衝。此方法成功的產生了中心光子能量在33eV,具有橢圓率0.94的近圓極化超連續譜。其頻寬可提供190阿秒的轉換極限脈衝寬,而模擬預測的色散脈衝寬度則為330阿秒。此外,我們也通過同時調整兩個極化反向旋轉的激發脈衝的橢圓度,實現了控制孤立極紫外脈衝的極化狀態 - 從近圓形到橢圓形到線性極化,並且有效的保持原本單使用線極化情況下的轉換效率。在整個實驗過程,完整偏振態的測量是通過首個自製的桌上型全光學式旋光儀完成。
    此成果中,我們不只獲得近圓極化的極紫外光孤立阿秒脈衝,甚至可完整的控制其極化旋轉方向和橢圓度,為阿秒尺度下的計量學開啟了一扇大門。


    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored.
    In the thesis, we first describe the generation principle to introduce the problems that conventional high harmonic generation faced, and then review the recent progress to produce a linearly polarized isolated attosecond pulses, or to emit an elliptically or circularly polarized high-harmonic EUV pulse train. Finally, we demonstrate a robust polarization control of isolated EUV pulses by exploiting non-collinear high harmonic generation driven by two counter-rotating few-cycle laser beams, produced by an all-solid-state supercontinuum technique, Multiple Plate Continuum. The near circularly polarized supercontinuum is realized to have ellipticity of 0.94 at a central photon energy of 33 eV with 190 attoseconds transform limit and a predicted linear chirp of 330 attoseconds. Moreover, by adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated EUV pulses - from near circular through elliptical to linear polarization without sacrificing conversion efficiency. The complete measurements of polarization state are achieved by the first table-top, all-optical polarimeter.
    Access to purely circularly polarized supercontinuum, combined with full helicity and ellipticity control paves the way towards attosecond metrology of circular dichroism.

    Contents Chapter 1 Introduction p.1 Chapter 2 Theory p.5 2.1 High harmonic generation p.5 2.1.1 Microscopic View of HHG p.6 2.1.2 Macroscopic View of HHG p.11 2.2 Generation of Isolated Attosecond Pulses p.18 2.2.1 Amplitude Gating p.18 2.2.2 Polarization Gating p.25 2.2.3 Ionization Gating p.27 2.2.4 Attosecond Lighthouse p.30 2.3 Elliptically and circularly polarized HHG p.32 2.3.1 EUV Phase Retarder p.34 2.3.2 Elliptically polarized harmonics emission by aligned molecules p.36 2.3.3 Near resonance HHG in gas or solid targets p.38 2.3.4 Bi-chromatic Circularly Polarized HHG in Collinear Geometry p.41 2.3.5 Spatially Varying Ellipticity HHG p.45 2.3.6 Single Color Circularly Polarized HHG in Non-collinear Geometry p.46 2.4 Polarization Control of Single Color HHG in Non-Collinear Geometry p.49 Chapter 3 Experiment Result and Discussion p.54 3.1 Fundamental Driver with Few-Cycle Duration p.54 3.2 Polarization Control in Non-Collinear Geometry p.58 3.3 Characterization of Isolation Property p.62 3.3.1 EUV Spectrometer p.62 3.3.2 EUV field autocorrelator p.66 3.4 Characterization of Polarization State p.69 3.4.1 Working Principle of EUV Polarimeter p.72 3.4.2 Ellipticity Scaling p.77 3-5 Polarization Gating Effect in Non-Collinear Geometry p.87 3.6 Carrier Envelope Phase Effect in Non-Collinear Geometry p.90 3.7 Spectrally Resolved Ellipticity of Isolated High-Harmonic Pulses p.93 Chapter 4 Conclusion p.94 Appendix Theoretical Method p.96 A1. Quantum: Strong field approximation including propagation p.96 A2. Semiclassical: The thin slab model p.97 Reference p.99

    Reference
    1 Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 7, 118 (1961).
    2 McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595-601 (1987).
    3 Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993).
    4 Li, X. F., L’Huillier, A., Ferray, M., Lompré, L. A. & Mainfray, G. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751 (1989).
    5 Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photon. 4, 822-832 (2010).
    6 Chen, M.-C. Modifying Driving Laser Wavelength to Generate Coherent, Ultrafast X-rays from Phase-Matched High-Order Harmonics, University of Colorado, (2012).
    7 Seres, E., Seres, J. & Spielmann, C. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation. Appl. Phys. Lett. 89, 181919 (2006).
    8 Sun, H.-W. et al. Extended phase matching of high harmonic generation by plasma-induced defocusing. Optica 4, 976 (2017).
    9 Popmintchev, T. et al. Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers. Science 336, 1287-1291 (2012).
    10 Popmintchev, D. et al. Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas. Science 350, 1225-1231 (2015).
    11 Wirth, A. et al. Synthesized Light Transients. Science 334, 195-200 (2011).
    12 Hassan, M. T. et al. Attosecond photonics: Synthesis and control of light transients. Rev. Sci. Instrum. 83, 111301 (2012).
    13 Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66-70 (2016).
    14 Silva, F. et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat. Commun. 3, 807 (2012).
    15 Cheng, Y.-C., Lu, C.-H., Lin, Y.-Y. & Kung, A. H. Supercontinuum generation in a multi-plate medium. Opt. Express 24, 7224-7231 (2016).
    16 Lu, C.-H. et al. Generation of intense supercontinuum in condensed media. Optica 1, 400-406 (2014).
    17 Huang, P. C. et al. EUV continuum from compressed multiple thin plate supercontinuum. Conference on Lasers and Electro-Optics (2016).
    18 Chen, B. H. Few-Cycle Pulse Compression from Supercontinuum, National Tsing Hua University, (2015).
    19 Shan, B., Ghimire, S. & Chang, Z. Generation of the attosecond extreme ultraviolet supercontinuum by a polarization gating. J. Mod. Opt. 52, 277-283 (2005).
    20 Feng, X. et al. Generation of Isolated Attosecond Pulses with 20 to 28 Femtosecond Lasers. Phys. Rev. Lett. 103, 183901 (2009).
    21 Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nat. Photon. 5, 655-663 (2011).
    22 Chen, M.-C. et al. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers. PNAS 23, E2361-E2367 (2014).
    23 Kim, K. T. et al. Photonic streaking of attosecond pulse trains. Nat. Photon. 7, 651-656 (2013).
    24 Antoine, P., Carré, B., L'Huillier, A. & Lewenstein, M. Polarization of high-order harmonics. Phys. Rev. A 55, 1314 (1997).
    25 Antoine, P., L’Huillier, A., Lewenstein, M., Salières, P. & Carré, B. Theory of high-order harmonic generation by an elliptically polarized laser field. Phys. Rev. A 53, 1725 (1996).
    26 Becker, W., Lohr, A., Kleber, M. & Lewenstein, M. A unified theory of high-harmonic generation: Application to polarization properties of the harmonics. Phys. Rev. A 56, 645 (1997).
    27 Dietrich, P., Burnett, N. H., Ivanov, M. & Corkum, P. B. High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light. Phys. Rev. A 50, 3585 (1994).
    28 Khan, S. D. et al. Ellipticity dependence of 400 nm-driven high harmonic generation. Appl. Phys. Lett. 99, 161106 (2011).
    29 Beaulieu, S. et al. Probing ultrafast dynamics of chiral molecules using time-resolved photoelectron circular dichroism. Faraday Discuss. 194, 325 (2016).
    30 Boeglin, C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458-461 (2010).
    31 Cireasa, R. et al. Probing molecular chirality on a sub-femtosecond timescale. Nat. Phys. 11, 654-658 (2015).
    32 Djiokap, J. M. N. et al. Electron Vortices in Photoionization by Circularly Polarized Attosecond Pulses. Phys. Rev. Lett. 115, 113004 (2015).
    33 Vodungbo, B. et al. Polarization control of high order harmonics in the EUV photon energy range. Opt. Express 19, 4346-4356 (2011).
    34 Schmidt, J., Guggenmos, A., Hofstetter, M., Chew, S. H. & Kleineberg, U. Generation of circularly polarized high harmonic radiation using a transmission multilayer quarter waveplate. Opt. Express 23, 33564-33578 (2015).
    35 Haessler, S., Caillat, J. & Salières, P. Self-probing of molecules with high harmonic generation. J. Phys. B: At. Mol. Opt. Phys. 44, 203001 (2011).
    36 Le, A.-T., Lucchese, R. R. & Lin, C. D. Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses. Phys. Rev. A 82, 023814 (2010).
    37 Zhou, X. et al. Elliptically Polarized High-Order Harmonic Emission from Molecules in Linearly Polarized Laser Fields. Phys. Rev. Lett. 102, 073902 (2009).
    38 Ferré, A. et al. A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments. Nat. Photon. 9, 93-98 (2015).
    39 Saito, N. et al. Observation of selection rules for circularly polarized fields in high-harmonic generation from a crystalline solid. Optica 4, 1333-1336 (2017).
    40 Tancogne-Dejean, N., Mücke, O. D., Kärtner, F. X. & Rubio, A. Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics. Nat. Commun. 8, 745 (2017).
    41 Kitzler, M., Xie, X., Roither, S., Scrinzi, A. & Baltuska, A. Angular encoding in attosecond recollision. New J. Phys. 10 (2008).
    42 Lambert, G. et al. Towards enabling femtosecond helicity-dependent spectroscopy with high-harmonic sources. Nat. Commun. 6, 6167 (2015).
    43 Perry, M. D. & Crane, J. K. High-order harmonic emission from mixed fields. Phys. Rev. A 48, 4051 (1993).
    44 Eichmann, H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, 3414 (1995).
    45 Long, S., Becker, W. & McIver, J. K. Model calculations of polarization-dependent two-color high-harmonic generation. Phys. Rev. A 52, 2262 (1995).
    46 Milošević, D. B., Becker, W. & Kopold, R. Generation of circularly polarized high-order harmonics by two-color coplanar field mixing. Phys. Rev. A 61, 063403 (2000).
    47 Milošević, D. B. & Becker, W. Attosecond pulse trains with unusual nonlinear polarization. Phys. Rev. A 62, 011403 (2000).
    48 Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543-549 (2014).
    49 Pisanty, E., Sukiasyan, S. & Ivanov, M. Spin conservation in high-order-harmonic generation using bicircular fields. Phys. Rev. A 90, 043829 (2014).
    50 Kfir, O. et al. In-line production of a bi-circular field for generation of helically polarized high-order harmonics. Appl. Phys. Lett. 108, 211106 (2016).
    51 Kfir, O. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photon. 9, 99-105 (2015).
    52 Fan, T. et al. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. PNAS 112 (46), 14206-14211 (2015).
    53 Frolov, M. V. et al. Control of Harmonic Generation by the Time Delay Between Two-Color, Bicircular Few-Cycle Mid-IR Laser Pulses. Phys. Rev. Lett. 120, 263203 (2018).
    54 Dorney, K. M. et al. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields. Phys. Rev. Lett. 119, 063201 (2017).
    55 Medišauskas, L., Wragg, J., Hart, H. v. d. & Ivanov, M. Y. Generating Isolated Elliptically Polarized Attosecond Pulses Using Bichromatic Counterrotating Circularly Polarized Laser Fields. Phys. Rev. Lett. 115, 153001 (2015).
    56 Milošević, D. B. Generation of elliptically polarized attosecond pulse trains. Opt. Lett. 40, pp. 2381-2384 (2015).
    57 Ellis, J. L. et al. High harmonics with spatially varying ellipticity. Optica 5, 479-485 (2018).
    58 Hickstein, D. D. et al. Non-collinear generation of angularly isolated circularly polarized high harmonics. Nat. Photon. 9, 743-750 (2015).
    59 Hernández-García, C. et al. Schemes for generation of isolated attosecond pulses of pure circular polarization. Phys. Rev. A 93, 043855 (2016).
    60 Simpson, E. R. & Mauritsson, J. Complete polarization control. Nat. Photon. 12, 316-317 (2018).
    61 Huang, P.-C. et al. Polarization control of isolated high-harmonic pulses. Nat. Photon. 12, 349-354 (2018).
    62 Dorney, K. M. et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation. Nat. Photon. 13, 123-130 (2018).
    63 Hernández-García, C., Román, J. S., Plaja, L. & Picón, A. Quantum-path signatures in attosecond helical beams driven by optical vortices. New J. Phys. 17 (2015).
    64 Rego, L., Román, J. S., Picón, A., Plaja, L. & Hernández-García, C. Nonperturbative Twist in the Generation of Extreme-Ultraviolet Vortex Beams. Phys. Rev. Lett. 117, 163202 (2016).
    65 Sansone, G. et al. Isolated Single-Cycle Attosecond Pulses. Science 314, 443-446 (2006).
    66 Mashiko, H. et al. Double Optical Gating of High-Order Harmonic Generation with Carrier-Envelope Phase Stabilized Lasers. Phys. Rev. Lett. 100, 103906 (2008).
    67 Gilbertson, S., Khan, S. D., Wu, Y., Chini, M. & Chang, Z. Isolated Attosecond Pulse Generation without the Need to Stabilize the Carrier-Envelope Phase of Driving Lasers. Phys. Rev. Lett. 105, 093902 (2010).
    68 Nabekawa, Y., Shimizu, T., Furukawa, Y., Takahashi, E. J. & Midorikawa, K. Interferometry of Attosecond Pulse Trains in the Extreme Ultraviolet Wavelength Region. Phys. Rev. Lett. 102, 213904 (2009).
    69 Lambert, G. et al. Towards enabling femtosecond helicity-dependent spectroscopy with high-harmonic sources. Nature Communications 6 (2015).
    70 Allaria, E. et al. Control of the Polarization of a Vacuum-Ultraviolet, High-Gain, Free-Electron Laser. Phys. Rev. X 4, 041040 (2014).
    71 T.Koide et al. Elliptical-polarization analyses of synchrotron radiation in the 5-80-eV region with a reflection polarimeter. Nucl. Instrum. Methods Phys. Res. Sect. A 308, 635-644 (1991).
    72 Werner, W. S. M., Glantschnlg, K. & Ambrosch-Draxl, C. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data 38, 1013 (2009).
    73 Hernández-García, C. et al. High-order harmonic propagation in gases within the discrete dipole approximation. Phys. Rev. A 82, 033432 (2010).
    74 Xie, X. et al. Internal Momentum State Mapping Using High Harmonic Radiation. Phys. Rev. Lett. 101, 033901 (2008).
    75 Fleischer, A., Sidorenko, P. & Cohen, O. Generation of high-order harmonics with controllable elliptical polarization. Opt. Lett. 38, 223-225 (2013).
    76 Chini, M., Zhao, K. & Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photon. 8, 176-186 (2014).
    77 Mangot, L. et al. Broadband transient dichroism spectroscopy in chiral molecules. Opt. Lett. 35, 381-383 (2010).
    78 Bigot, J.-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 5, 512-520 (2009).
    79 Janssen, M. H. M. & Powisb, I. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys. 16, 856 (2014).
    80 Pitzer, M. et al. Direct Determination of Absolute Molecular Stereochemistry in Gas Phase by Coulomb Explosion Imaging. Science 341, 1096-1100 (2013).
    81 Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62-67 (2016).
    82 Chen, C. et al. Distinguishing attosecond electron-electron scattering and screening in transition metals. PNAS 114, E5300-E5307 (2017).
    83 Bigot, J.-Y. Down to the nanometre scale. Nat. Mater. 12, 283-284 (2013).
    84 Fidler, A. F., Singh, V. P., Long, P. D., Dahlberg, P. D. & Engel, G. S. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy. Nat. Commun. 5, 3286 (2014).
    85 Stohr, J. et al. Element-Specific Magnetic Microscopy with Circularly Polarized X-Rays. Science 259, 658-661 (1993).
    86 Graves, C. E. et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 12, 293-298 (2013).
    87 Beaulieu, S. et al. Probing ultrafast dynamics of chiral molecules using time-resolved photoelectron circular dichroism. Faraday Discuss. 194, 325 (2016).
    88 Meyer‐Ilse, J., Akimov, D. & Dietzek, B. Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook. Laser Photonics Rev. 7, 495-505 (2013).
    89 Jiménez-Galán, Á. et al. Attosecond recorder of the polarization state of light. Nat. Commun. 9, 850 (2018).
    90 Chen, C. et al. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology. Sci. Adv. 2, e1501333 (2016).

    QR CODE