簡易檢索 / 詳目顯示

研究生: 何政道
Ho, Cheng-Tao
論文名稱: 以磁共振影像即時觀察聚焦式超音波造成之穩態穴蝕效應
Real-time Monitoring of Focused Ultrasound Induced Stable Cavitation by Using Magnetic Resonance Imaging
指導教授: 彭旭霞
Peng, Hsu-Hsia
口試委員: 劉浩澧
鍾孝文
葉秩光
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 92
中文關鍵詞: 微氣泡穩態穴蝕效應即時觀察聚焦型超音波
外文關鍵詞: stable cavitation, half-Fourier acquisition single-shot turbo spin-echo (HASTE)
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在聚焦型超音波影響下,微氣泡所產生之穩態或慣性穴蝕效應可用來開啟血腦屏障,由於慣性穴蝕效應會造成出血,穩態穴蝕效應被視為較好的方式來開啟血腦屏障。為了降低非聚焦型超音波影響區域之傷害,視覺化聚焦點來得到精準的聚焦位置是非常重要的議題。本研究的目的是透過磁共振影像自迴訊脈衝序列即時觀察與定位聚焦超音波對微氣泡所產生的穩態穴蝕效應。
    穩態穴蝕效應會造成局部的液體擾動,液體擾動會造成被激發的磁矩流進或流出取像平面進而導致磁共振影像訊號下降,同時,液體擾動也會導致磁矩相位分散進而造成訊號下降。我們將藉由五種不同條件設計的仿體實驗(超音波聲壓、超音波脈衝條件、磁共振影像取像平面厚度、微氣泡濃度、仿體擺放型態)以及活體實驗來觀察及探討訊號變化。
    在五種條件中,微氣泡溶液均顯現顯著差異於生理食鹽水。在先前的研究中已指出超音波聲壓、超音波脈衝條件對穩態穴蝕效應的影響,在此研究中也發現相符的實驗結果。高強度的聲壓與較長的超音波脈衝長度會較強的訊號變化。此外,實驗結果發現磁共振影像平面厚度會高度影響訊號變化的程度,當取像平面厚度小於管徑時,取像平面厚度越薄所觀察到的訊號變化程度會越明顯。微氣泡的濃度則不會明顯影響訊號變化的程度。在活體實驗的部分,可以觀察到聚焦位置附近之腦組織有顯著的訊號下降,此訊號下降區域也可被本篇研究之影像處理方法所定位,且此定位區域與釓螯合物在磁共振影像上外漏區域及伊文斯藍在腦組織切片的染色區域皆高度相似。總而言之,本篇研究展示了使用磁共振影像即時觀察影像訊號改變的可行性,血腦屏障開啟的區域也可被本篇研究之影像處理方法定位。


    Focused ultrasound (FUS) can locally cavitated gas-filled microbubbles (MBs) of stable cavitation (SC) and inertial cavitation (IC) to induce blood–brain barrier (BBB) opening. Because of the hemolysis caused by IC, SC is a more preferable effect to conduct to BBB opening. To reduce the damage of nontargeting brain tissue, imaging guidance is crucial to localize transient BBB opening. The aim of this study is to real-time localize and monitor SC-induced BBB-opening by a half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence.
    SC would cause locally turbulent flow around focal point. Turbulent flow can make excited spins flow out of imaging plane and induce intravoxel dephasing effect, resulting in signal drop in MR image. In vitro experiments in static or flowing phantom and in vivo experiment were conducted in this study to observe the signal change. We designed in vitro experiment with five conditions including acoustic pressure, duty cycle and pulse repetition frequency (PRF), slice thickness, MB concentration, and posture of phantom.
    We found that in vitro experiments of different experimental conditions all shown the significant difference of SI changes between microbubble and normal saline solutions. Increasing acoustic pressure would result in greater radial expansion ratio of MBs, resulting in more significant SI changes. Longer duty cycle as well as lower PRF allowed longer pulse length to accumulate the energy from FUS pulse, also increasing SI changes. Ratio of MR slice thickness to chamber/vessel diameter highly influenced the degree of signal change. As for in vivo experiment, SI changes around focal point in tissue could be observed and localized by cavitation index (CI) map, which was highly consistent with Gd leakage and EB dye. In conclusion, this study demonstrates the feasibility of real-time monitoring SC-induced SI changes, and the location of BBB opening could be identified through the computation of SC-induced SI changes.

    ABSTRACT CONTENTS Chapter 1 Introduction………………………………………………………1 1.1 Focused ultrasound and microbubbles 1 1.1.1 Mechanisms of microbubbles combined with focused ultrasound 1 1.1.2 BBB opening 2 1.2 Monitoring of FUS cavitation 4 1.2.1 Ultrasound 4 1.2.2 Optical observation 4 1.2.3 MRI 4 1.3 Motivation 5 1.4 Dissertation Orientation 5 Chapter 2 Theory………………………………………………………………………6 2.1 HASTE sequence 6 2.2 Theory of SI change 6 2.2.1 Turbulent flow effect on MR acquisition 6 2.2.2 FUS applied on different k-lines 10 Chapter 3 Methods and Results: in vitro…………14 3.1 Methods: 3T MRI 14 3.1.1 MBs preparation 14 3.1.2 Phantom preparation 15 3.1.3 Experimental set-up 15 3.1.4 Ultrasound parameter 16 3.1.5 MRI acquisition 16 3.1.6 Data analysis process 18 3.2 Methods: 7T MRI 19 3.2.1 Phantom preparation 19 3.2.2 Experimental set-up 19 3.2.3 Ultrasound parameter 20 3.2.4 MRI acquisition 20 3.2.5 Data analysis process 22 3.3 Results: 3T MRI 23 3.3.1 Acoustic pressure 23 3.3.2 Duty cycle and PRF 25 3.3.3 Ratio of MR slice thickness to chamber diameter 29 3.3.4 MBs concentration 31 3.3.5 Posture of phantom 33 3.4 Results: 7T MRI 35 3.4.1 Static phantom 35 3.4.2 Flowing phantom: Acoustic pressure 37 3.4.3 Flowing phantom: Ratio of MR slice thickness to chamber diameter 40 Chapter 4 Methods and Results: in vivo…………42 4.1 Methods 42 4.1.1 Animal preparation 42 4.1.2 Experimental set-up 43 4.1.3 Ultrasound sonication 45 4.1.4 MRI acquisition 45 4.1.5 Data analysis process 47 4.1.6 Histology 50 4.2 General Results 51 4.3 Results: Control Rat 54 4.4 Results: Experimental Rat 58 Chapter 5 Discussion and Conclusion…………………67 5.1 In vitro: 3T and 7T 67 5.1.1 Acoustic pressure 67 5.1.2 Duty cycle and PRF 67 5.1.3 Ratio of MR slice thickness to chamber diameter 68 5.1.4 MBs concentration 69 5.1.5 Posture of phantom 70 5.2 In vivo: 7T 71 5.2.1 SI changes 72 5.2.2 Mappings 72 5.3 Limitations 74 5.4 Conclusions 75 5.5 Future Work 76 Chapter 6 References…………………………………………………………77 Chapter 7 Supplementary Materials………………………82 Appendix I……………………………………………………………………………………86 Appendix II…………………………………………………………………………………91

    1. Cheung JS, Chow AM, Guo H, Wu EX. Microbubbles as a novel contrast agent for brain MRI. Neuroimage. 2009;46(3):658-64.
    2. Wong KK, Huang I, Kim YR, Tang H, Yang ES, Kwong KK, et al. In vivo study of microbubbles as an MR susceptibility contrast agent. Magnetic resonance in medicine. 2004;52(3):445-52.
    3. Pouliopoulos AN, Bonaccorsi S, Choi JJ. Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy. Physics in medicine and biology. 2014;59(22):6941.
    4. Sboros V. Response of contrast agents to ultrasound. Advanced drug delivery reviews. 2008;60(10):1117-36.
    5. Chen W-S, Brayman AA, Matula TJ, Crum LA, Miller MW. The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound in medicine & biology. 2003;29(5):739-48.
    6. Husseini GA, de la Rosa MAD, Richardson ES, Christensen DA, Pitt WG. The role of cavitation in acoustically activated drug delivery. Journal of Controlled Release. 2005;107(2):253-61.
    7. Basta G, Venneri L, Lazzerini G, Pasanisi E, Pianelli M, Vesentini N, et al. In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound. Cardiovascular research. 2003;58(1):156-61.
    8. Church CC, Carstensen EL. “Stable” inertial cavitation. Ultrasound in medicine & biology. 2001;27(10):1435-7.
    9. Liu H-L, Fan C-H, Ting C-Y, Yeh C-K. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics. 2014;4(4):432.
    10. Rapoport SI. Blood-brain barrier in physiology and medicine: Raven Press; 1976.
    11. Staddon JM, Rubin LL. Cell adhesion, cell junctions and the blood—brain barrier. Current opinion in neurobiology. 1996;6(5):622-7.
    12. Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron. 2002;36(4):555-8.
    13. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage. 2005;24(1):12-20.
    14. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, et al. Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. Journal of neurosurgery. 2006;105(3):445-54.
    15. Chopra R, Vykhodtseva N, Hynynen K. Influence of exposure time and pressure amplitude on blood− brain-barrier opening using transcranial ultrasound exposures. ACS chemical neuroscience. 2010;1(5):391-8.
    16. Yang F-Y, Fu W-M, Yang R-S, Liou H-C, Kang K-H, Lin W-L. Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption. Ultrasound in Medicine and Biology. 2007;33(9):1421-7.
    17. Burgess M, Apostolakis I, Konofagou E. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles. Physics in Medicine & Biology. 2018;63(6):065009.
    18. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging–guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640-6.
    19. Hynynen K, McDannold N, Vykhodtseva N, Jolesz F. Non-invasive opening of BBB by focused ultrasound. Brain Edema Xii: Springer; 2003. p. 555-8.
    20. Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29(3):365-76.
    21. Chu P-C, Chai W-Y, Hsieh H-Y, Wang J-J, Wey S-P, Huang C-Y, et al. Pharmacodynamic analysis of magnetic resonance imaging-monitored focused ultrasound-induced blood-brain barrier opening for drug delivery to brain tumors. BioMed research international. 2013;2013.
    22. De Santis P, Sette D, Wanderlingh F. Cavitation detection: The use of the subharmonics. The Journal of the Acoustical Society of America. 1967;42(2):514-6.
    23. Shi W, Forsberg F, Raichlen J, Needleman L, Goldberg B. Pressure dependence of subharmonic signals from contrast microbubbles. Ultrasound in Medicine and Biology. 1999;25(2):275-83.
    24. McDannold N, Vykhodtseva N, Hynynen K. Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity. Physics in Medicine & Biology. 2006;51(4):793.
    25. Tung Y-S, Vlachos F, Choi JJ, Deffieux T, Selert K, Konofagou EE. In vivo transcranial cavitation threshold detection during ultrasound-induced blood–brain barrier opening in mice. Physics in Medicine & Biology. 2010;55(20):6141.
    26. Fan C-H, Liu H-L, Ting C-Y, Lee Y-H, Huang C-Y, Ma Y-J, et al. Submicron-bubble-enhanced focused ultrasound for blood–brain barrier disruption and improved CNS drug delivery. PloS one. 2014;9(5):e96327.
    27. Gyöngy M, Coussios C-C. Passive cavitation mapping for localization and tracking of bubble dynamics. The Journal of the Acoustical Society of America. 2010;128(4):EL175-EL80.
    28. Zeqiri B, Gelat PN, Hodnett M, Lee ND. A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory, and prototype development. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2003;50(10):1342-50.
    29. Marmottant P, Versluis M, de Jong N, Hilgenfeldt S, Lohse D. High-speed imaging of an ultrasound-driven bubble in contact with a wall:“Narcissus” effect and resolved acoustic streaming. Experiments in fluids. 2006;41(2):147-53.
    30. Ohl C-D, Arora M, Ikink R, De Jong N, Versluis M, Delius M, et al. Sonoporation from jetting cavitation bubbles. Biophysical journal. 2006;91(11):4285-95.
    31. Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by optically controlled microbubble cavitation. Nature physics. 2005;1(2):107.
    32. Lin SC, Wu CH, Wang CH, Kang ST, Yeh CK, Chen WS, Peng HH. Real-time monitoring of inertial cavitation effect on diluted microbubbles by MRI. In Proceedings of the 21st Annual Meeting of ISMRM, Salt Lake City, Utah, 2013. 2013:Abstract 1825.
    33. Peng HH, Wu CH, Kang ST, Zhang JW, Liu HL, Chen WS, et al. Real‐time monitoring of inertial cavitation effects of microbubbles by using MRI: In vitro experiments. Magnetic resonance in medicine. 2017;77(1):102-11.
    34. Allen SP, Hernandez‐Garcia L, Cain CA, Hall TL. MR‐based detection of individual histotripsy bubble clouds formed in tissues and phantoms. Magnetic resonance in Medicine. 2016;76(5):1486-93.
    35. Allen SP, Hall TL, Cain CA, Hernandez‐Garcia L. Controlling cavitation‐based image contrast in focused ultrasound histotripsy surgery. Magnetic Resonance in Medicine. 2015;73(1):204-13.
    36. Kiefer B. Image acquisition in a second with half-Fourier-acquisition single-shot turbo spin echo. J Magn Reson Imaging. 1994;4:86.
    37. Mitchell DG, Outwater EK, Vinitski S. Hybrid RARE: implementations for abdominal MR imaging. Journal of Magnetic Resonance Imaging. 1994;4(2):109-17.
    38. Rydberg JN, Lomas DJ, Coakley KJ, Hough DM, Ehman RL, Riederer SJ. Comparison of breath-hold fast spin-echo and conventional spin-echo pulse sequences for T2-weighted MR imaging of liver lesions. Radiology. 1995;194(2):431-7.
    39. Semelka RC, Kelekis NL, Thomasson D, Brown MA, Laub GA. HASTE MR imaging: description of technique and preliminary results in the abdomen. Journal of Magnetic Resonance Imaging. 1996;6(4):698-9.
    40. Patel MR, Klufas RA, Alberico RA, Edelman RR. Half-fourier acquisition single-shot turbo spin-echo (HASTE) MR: comparison with fast spin-echo MR in diseases of the brain. American journal of neuroradiology. 1997;18(9):1635-40.
    41. Dyverfeldt P, Sigfridsson A, Kvitting JPE, Ebbers T. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase‐contrast MRI. Magnetic resonance in medicine. 2006;56(4):850-8.
    42. Kang S-T, Yeh C-K. A maleimide-based in-vitro model for ultrasound targeted imaging. Ultrasonics sonochemistry. 2011;18(1):327-33.
    43. Choi JJ, Feshitan JA, Baseri B, Wang S, Tung Y-S, Borden MA, et al. Microbubble-size dependence of focused ultrasound-induced blood–brain barrier opening in mice in vivo. IEEE Transactions on Biomedical Engineering. 2010;57(1):145-54.
    44. Chomas JE, Dayton PA, May DJ, Ferrara KW. Threshold of fragmentation for ultrasonic contrast agents. Journal of biomedical optics. 2001;6(2):141-51.
    45. Bloch SH, Wan M, Dayton PA, Ferrara KW. Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Applied physics letters. 2004;84(4):631-3.
    46. Hölscher T, Raman R, Fisher DJ, Ahadi G, Zadicario E, Voie A. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis. Journal of therapeutic ultrasound. 2013;1(1):18.
    47. Zhang M, Sun D, Xie Y, Peng G, Xia J, Long H, et al. Three-dimensional visualization of rat brain microvasculature following permanent focal ischaemia by synchrotron radiation. The British journal of radiology. 2014;87(1038):20130670.
    48. Ahmed D, Mao X, Juluri BK, Huang TJ. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and nanofluidics. 2009;7(5):727.
    49. McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound in Medicine and Biology. 2005;31(11):1527-37.
    50. Pulkkinen A, Huang Y, Song J, Hynynen K. Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment. Physics in Medicine & Biology. 2011;56(15):4661.
    51. Sheikov N, McDannold N, Sharma S, Hynynen K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound in medicine & biology. 2008;34(7):1093-104.
    52. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound in Medicine and Biology. 2004;30(7):979-89.
    53. Fan C-H, Lin W-H, Ting C-Y, Chai W-Y, Yen T-C, Liu H-L, et al. Contrast-enhanced ultrasound imaging for the detection of focused ultrasound-induced blood-brain barrier opening. Theranostics. 2014;4(10):1014.
    54. Fan C-H, Liu H-L, Huang C-Y, Ma Y-J, Yen T-C, Yeh C-K. Detection of intracerebral hemorrhage and transient blood-supply shortage in focused-ultrasound-induced blood–brain barrier disruption by ultrasound imaging. Ultrasound in medicine & biology. 2012;38(8):1372-82.
    55. Yang G-Y, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. Journal of neurosurgery. 1994;81(1):93-102.
    56. Orakcioglu B, Becker K, Sakowitz O, Unterberg A, Schellinger P. Serial diffusion and perfusion MRI analysis of the perihemorrhagic zone in a rat ICH model. Changing Aspects in Stroke Surgery: Aneurysms, Dissections, Moyamoya Angiopathy and EC-IC Bypass. 2008:15-8.
    57. Petito CK. Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. Journal of Neuropathology & Experimental Neurology. 1979;38(3):222-34.
    58. Raymond SB, Skoch J, Hynynen K, Bacskai BJ. Multiphoton imaging of ultrasound/Optison mediated cerebrovascular effects in vivo. Journal of Cerebral Blood Flow & Metabolism. 2007;27(2):393-403.
    59. Sassaroli E, Hynynen K. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound. Ultrasound in Medicine and Biology. 2007;33(10):1651-60.

    QR CODE