簡易檢索 / 詳目顯示

研究生: 朱右言
Chu, Yu-Yen
論文名稱: 以賈凡尼置換反應製備鍍銀銅粉於導電膠之應用
Manufacturing of silver-coated copper flake by Galvanic replacement for conductive paste application
指導教授: 陳燦耀
Chen, Tsan-Yao
陳馨怡
Chen, Hsin-Yi Tiffany
口試委員: 孫文檠
孫文賢
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 導電膠賈凡尼置換鍍銀銅粉
外文關鍵詞: Conductive paste, Galvanic replacement, Silver-coated copper
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了能使科技走進大眾家庭裡,產品的價格必須越來越親民,在不斷精簡成本的需求下,而本研究的一個相中的對象便是在3C與工業中廣泛運用的導電膠,導電膠是一種具導電性的高分子樹脂混和物,藉由樹脂吸附導電粉體使樹脂具有導電導熱性,根據需求不同選用不同粉體,傳統上最常使用的便是銀粉因其具有最佳的導電導熱特性,但銀的成本居高不下因此我們如果要降低導電粉末的成本首要就是把貴金屬的成分降低,再參照不同文獻後本研究導入了鍍層結構,透過銀離子&銅的置換反應得到鍍銀銅粉,結合銅的高導電性與低成本和銀的強抗氧化性,在降低成本的情況下又不失其導電率,透過製程上的調整,改變合成階段的溫度、時間、氨水濃度等參數去了解鍍銀反應在反應上的包覆完整性與動力學間的關聯性,透過XRD、SEM-EDX等分析儀器交叉比對,找出一條最適合銀銅粉製備的標準反應程序,可以推動國內包含導電導熱在內之任何相關應用的成本下使相關應用端產品在國際上更有競爭力。


    To bring state-of-the-art technology products in our home, the price of the products must be affordable, one of our targets to reduce the cost is conductive paste which been applied in industry widely.
    Conductive paste is a mixture of conductive metal powder with polymer adhesive,by adsorption of metal powder, the polymer adhesive become both electrical and thermal conductive and can be attach on different material surface, many conductive metal powder can be used according to your demonds, traditionaly in industry using silver powser to fabricate conductive paste but that will accompany high cost, so reducing the usage of precious metal is the top priority, we decide to introduce Core-Shell structure to our experiment, we prepared the micro-scale Silver-coated copper powder by galvanic replacement between copper and silver ion, combining high electrol conductivity and anti-oxidation behavior of silver, we can have powder with lower cost and strong anti-oxidation ability , by modifying the synthesis process including the ammonia concerntration、temperature and synthesis time to get the optimal enperimental process, by analysis the XRD、SEM-EDX、and other instrument to clearify the synthesis reaction dynamics and coverage of silver,we can reduce the cost of any application related of conductive paste and gain more competitive.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 11 1-1 研究背景 11 1-2 導電膠應用與發展 11 1-3 導電膠組成 12 第二章 文獻回顧 15 2-1 導電粉體現況 15 2-2 導電粉體選擇條件 18 2-2-1 導電粉體形貌篩選 19 2-2-2 導電粉體大小篩選 20 2-3 銀包銅粉製備 20 2-3-1 金屬還原電位 22 2-3-2 表面氧化層清潔 23 2-4 導電膠配置 25 2-4-1 樹脂選擇 26 2-4-2 添加劑選擇 28 2-5 文獻回顧總攬 29 第三章 實驗方法 30 3-1 前言 30 3-2 實驗設計 30 3-2-1 實驗研究方向 30 3-2-2 實驗藥品 31 3-3 實驗流程 31 3-4 實驗分析 38 3-4-1 三用電錶(volt-ohm-milliammeter) 38 3-4-2 循環伏安法 (Cyclic voltammetry, CV) 38 3-4-3 X光繞射分析儀 (X-ray diffraction, XRD) 38 3-4-4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 40 3-4-5 X光光電子能譜 (X-Ray Photoemission Spectroscopy, XPS) 41 第四章 結果與討論 42 4-1 自合成銀包銅粉對照組測試 42 4-2 在置換反應中氨水添加量之影響 45 4-2-1 電阻與表面電化學分析 46 4-2-2 物性分析 50 4-2-3 本章總結 57 4-3 不同置換反應時間對於粉體結構的影響 58 4-3-1 電阻與表面電化學分析 58 4-3-2 物性分析 60 4-3-3 本章總結 67 4-4 不同置換反應溫度對結構的影響 68 4-4-1 電阻與表面電化學分析 69 4-4-2 物性分析 71 4-4-3 本節總結 77 4-5 四點探針校對電阻值 78 第五章 結論 & 後續實驗建議 80

    Uncategorized References
    1. Best Thermal Pastes – Buyers Guide & Reviews 2020.
    2. Removing Components from Circuit Board | Soldering.
    3. Source: Tanaka Holdings Co., Ltd.
    TANAKA Develops Silver Paste Able to Form Electronic Circuits Using UV Curing to Support Screen Printing.
    4. 科技大觀園_神奇的水膠. Available from: https://scitechvista.nat.gov.tw/c/sgY1.htm.
    5. Shimura, K. and H. Yoshida, Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci., 2011. 4: p. 2467-2481.
    6. Smithells Metals Reference Book, Sixth Edition.
    7. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998.
    8. Aharony, D.S.A., Introduction To Percolation Theory: Second Edition.
    9. 冯清福,孟宪伟,李世鸿*,梁云,李俊鹏, 导电填料对电子浆料性能影响的研究进展.
    10. 陶宇, 夏., 张国庆, 吴希俊, 苏浩, 梁平辉, 吴海平, 陶国良, 填料长径比对导电胶渗流阈值的影响.
    11. Heo, S.I., et al., Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells. Advanced Composite Materials, 2006. 15(1): p. 115-126.
    12. ,田民波, 熊.杨.吴.郑., 银粉形貌与尺寸对导电胶电性能的影响.
    13. Daoqiang, L., Q.K. Tong, and C.P. Wong, Mechanisms underlying the unstable contact resistance of conductive adhesives. IEEE Transactions on Electronics Packaging Manufacturing, 1999. 22(3): p. 228-232.
    14. Xu, X., et al., Electroless silver coating on fine copper powder and its effects on oxidation resistance. Materials Letters, 2003. 57(24): p. 3987-3991.
    15. Hai, H.T., et al., Developing process for coating copper particles with silver by electroless plating method. Surface and Coatings Technology, 2006. 201(6): p. 3788-3792.
    16. Grouchko, M., A. Kamyshny, and S. Magdassi, Formation of air-stable copper–silver core–shell nanoparticles for inkjet printing. Journal of Materials Chemistry, 2009. 19(19): p. 3057-3062.
    17. Tsuji, M., et al., Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method. CrystEngComm, 2010. 12(11): p. 3900-3908.
    18. Tsakiris, V., W. Kappel, and G. Alecu, Solid state diffusion welding of Cu-Fe/Al/Ag and Al-Ni dissimilar metals. Journal of Optoelectronics and Advanced Materials, 2011. 13: p. 1176-1180.
    19. Muzikansky, A., et al., Ag Dewetting in Cu@Ag Monodisperse Core–Shell Nanoparticles. The Journal of Physical Chemistry C, 2013. 117(6): p. 3093-3100.
    20. Chee, S.-S. and J.-H. Lee, Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. Journal of Materials Chemistry C, 2014. 2(27): p. 5372-5381.
    21. Miyakawa, M., et al., Continuous syntheses of Pd@Pt and Cu@Ag core–shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement. Nanoscale, 2014. 6(15): p. 8720-8725.
    22. 惠1,周继禹2,付仁春1,郭忠诚1, 黄., 太阳能电池正极浆料用超细Cu/Ag核壳金属粉制备. RARE METAL MATERIALS AND ENGINEERING, 2014.
    23. Lee, C., et al., Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics. Nanotechnology, 2015. 26(45): p. 455601.
    24. Stewart, I.E., et al., Synthesis of Cu–Ag, Cu–Au, and Cu–Pt Core–Shell Nanowires and Their Use in Transparent Conducting Films. Chemistry of Materials, 2015. 27(22): p. 7788-7794.
    25. He, X., et al., A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement. Journal of Nanomaterials, 2016. 2016: p. 2127980.
    26. Li, W., et al., Synthesis of stable CucoreAgshell&Ag particles for direct writing flexible paper-based electronics. RSC Advances, 2016. 6(67): p. 62236-62243.
    27. Andal, V. and G. Buvaneswari, Effect of reducing agents in the conversion of Cu2O nanocolloid to Cu nanocolloid. Engineering Science and Technology, an International Journal, 2017. 20(1): p. 340-344.
    28. Laloy, J., et al., Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use. Journal of Nanoparticle Research, 2017. 19(8): p. 266.
    29. Pajor-Świerzy, A., et al., Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 521: p. 272-280.
    30. Sakthisabarimoorthi, A., et al., Fabrication of Cu@Ag core–shell nanoparticles for nonlinear optical applications. Journal of Materials Science: Materials in Electronics, 2017. 28(6): p. 4545-4552.
    31. Zhao, K., et al. Preparation of nano Cu@Ag core shell powder for electronic packaging. in 2017 18th International Conference on Electronic Packaging Technology (ICEPT). 2017.
    32. Osowiecki, W.T., et al., Tailoring Morphology of Cu–Ag Nanocrescents and Core–Shell Nanocrystals Guided by a Thermodynamic Model. Journal of the American Chemical Society, 2018. 140(27): p. 8569-8577.
    33. Shang, S., et al., Synthesis of Cu@Ag core–shell nanoparticles for characterization of thermal stability and electric resistivity. Applied Physics A, 2018. 124(7): p. 492.
    34. Wu, B., et al., Preparation and Properties of High Density and High Coverage Silver-coated Copper Powder. Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2018. 32: p. 775-781.
    35. Jiang, D.-H., et al., Facile Preparation of Cu/Ag Core/Shell Electrospun Nanofibers as Highly Stable and Flexible Transparent Conductive Electrodes for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019. 11(10): p. 10118-10127.
    36. Zhang, B., et al., Alloying and Embedding of Cu-Core/Ag-Shell Nanowires for Ultrastable Stretchable and Transparent Electrodes. ACS Applied Materials & Interfaces, 2019. 11(20): p. 18540-18547.
    37. Zhang, Y., et al., PVP-Mediated Galvanic Replacement Synthesis of Smart Elliptic Cu–Ag Nanoflakes for Electrically Conductive Pastes. ACS Applied Materials & Interfaces, 2019. 11(8): p. 8382-8390.
    38. Hai, H.T., H. Takamura, and J. Koike, Oxidation behavior of Cu–Ag core–shell particles for solar cell applications. Journal of Alloys and Compounds, 2013. 564: p. 71-77.
    39. Ma, F. and J. Zhang, Recent progress in syntheses and applications of Cu@Ag core-shell nanoparticles. Journal of Physics: Conference Series, 2019. 1347: p. 012095.
    40. Tsai, C.-H., et al., Thermal stability of Cu@Ag core–shell nanoparticles. Corrosion Science, 2013. 74: p. 123-129.
    41. Zhang, B., et al., Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core–Shell Nanowires for Flexible Electronics. Inorganic Chemistry, 2019. 58.
    42. Xia, X., et al., 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties. Advanced Materials, 2013. 25(44): p. 6313-6333.
    43. 條目: 維生素C. Available from: https://zh.wikipedia.org/wiki/%E7%BB%B4%E7%94%9F%E7%B4%A0C.
    44. 沈銘原. https://scitechvista.nat.gov.tw/c/sT0o.htm. 2019.9.
    45. 條目: 交叉鏈接. Available from: https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B7%D0%B8%D0%BD%D0%B0?oldformat=true.
    46. 公自轉機示意圖. Available from: http://www.britnix.com.tw/tech2.html.
    47. Lab1st真空烘箱 Available from: https://www.lab1st.com/vacuum-drying-oven.
    48. Giri, S. and A. Sarkar, Electrochemical Study of Bulk and Monolayer Copper in Alkaline Solution. Journal of The Electrochemical Society, 2016. 163: p. H252-H259.
    49. Marenco, A.J., et al., Electrochemical properties of gas-generated silver nanoparticles in the presence of cyano- and chloride-containing compounds. Analyst, 2009. 134(10): p. 2021-2027.
    50. Verma, A. and M.S. Mehata, Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences, 2016. 9(1): p. 109-115.
    51. Hoar, T.P. and G.P. Rothwell, The potential/pH diagram for a copper-water-ammonia system: its significance in the stress-corrosion cracking of brass in ammoniacal solutions. Electrochimica Acta, 1970. 15(6): p. 1037-1045.

    QR CODE