研究生: |
蘇詠翔 Yung-Hsiang Su |
---|---|
論文名稱: |
適用於碼率相容低密度奇偶檢查迴旋碼之動態排程 Dynamic Scheduling for Rate-Compatible LDPC Convolutional Codes |
指導教授: |
翁詠祿
Yeong-Luh Ueng |
口試委員: |
王忠炫
Chung-Hsuan Wang 李晃昌 Huang-Chang Lee |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 低密度奇偶檢查碼 、低密度奇偶檢查迴旋碼 、動態排程 、無靜態變量節點差值可信度傳遞 |
外文關鍵詞: | LDPC-CC, SVNF-RBP |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文,我們於低密度奇偶檢查迴旋碼 (low-density parity-check convolutional codes, LDPC-CCs) 實現無靜態變量節點差值可信度傳遞 (silent variable nodes free residual belief propagation, SVNF-RBP) 動態排程。
相較於標準序列排程而言,動態排程 (Informed dynamic scheduling, IDS) 能夠藉由有效率更新資訊的方式,得到較快的收斂速度和較好的效能表現,這是我們為何選擇使用動態排程的主要原因。在所有動態排程當中我們選擇 SVNF-RBP 作為核心演算法,因為 SNVF-RBP 有一個演算法動作能夠依序指定變量節點,這個特性能夠使 SVNF-RBP 輕易與 LDPC-CCs 結合,且依舊保有平行式疊代解碼的功能。 SVNF-RBP 因為克服貪婪群組與靜態變量節點兩種現象,因此在錯誤率的效能表現與收斂速度皆優於傳統動態排程。此外我們改良 SVNF-RBP,使其能夠在不增加運算複雜度的情況下,提高訊息更新的質量。最終,藉由設計 IEEE 802.16m 穿刺格式,實現增量冗餘形式的混合式自動重送請求。
In this thesis, we applied dynamic scheduling of silent variable nodes free residual belief propagation (SVNF-RBP) to low-density parity-check convolutional codes (LDPC-CCs).
Informed dynamic scheduling (IDS) can get higher convergenence speed and better performance by updating message efficiently rather than standard sequential scheduling, this is the main reason why we use IDS. We choose SVNF-RBP to be core algorithm in all types of IDS, because SVNF-RBP has an algorithm behavior which can assign variable node sequentially, this character makes SVNF-RBP combined with LDPC-CCs easily, and makes iteration-parallel decoding of LDPC-CCs still function work. Because SVNF-RBP overcame two phenomenon of greedy group and silent variable nodes, so the performance and the convergenence speed of SVNF-RBP will be better than the performance and the convergenence speed of traditional IDS. Finally, we achieved incremental redundancy (IR) typed hybrid automatic repeat request (HARQ) by designing IEEE 802.16m puccturing pattern.
[1] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.
[2] D. J. C. MacKay and R. M. Neal, “Good Codes based on Very Sparse Matrices,” Cryptography and Coding. 5th IMA Conf., C. Boyd, Ed., Lecture Notes in Computer Science, no. 1025. pp. 100-111, Oct. 1995. Springer, Berlin, Germany.
[3] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett., vol. 33, no. 6, pp. 457-458, Jun. 1997.
[4] D. J. C. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
[5] IEEE Standard for Information technology— Telecommunications and information exchange between systems— Local and metropolitan area networks— Specific requirements; Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications; Amendment 1: Physical Layer and Management Parameters for 10 Gb/s Operation, Type 10GBASE-T, IEEE-SA 802.3an, 2006.
[6] A. Morello and V. Mignone, “DVB-S2: The Second Generation Standard for Satellite Broad-band Services,” Proceedings of the IEEE, vol. 94, no. 1, pp. 210-227, Jan. 2006.
[7] IEEE Standard for Information technology— Telecommunications and information exchange between systems— Local and metropolitan area networks Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 5: Enhancements for Higher Throughput, IEEE-SA 802.11n, 2009.
[8] IEEE Standard for Local and metropolitan area networks; Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE-SA 802.16e, 2005.
[9] ITU-T G.9960 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU; SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Access networks— In premises networks; Unified high-speed wireline-based home networking transceivers— System architecture and physical layer specification, ITU-T G.9960, 2011.
[10] A. Jimenez-Felstrom and K. S. Zigangirov, “Time-Varying Periodic Convolutional Codes With Low-Density Parity-Check Matrix,” IEEE Trans. Inf. Theory, vol. 45, no. 9, pp. 2181-2191, Sep. 1999.
[11] IEEE Standard for Local and metropolitan area networks; Part 16: Air Interface for Broadband Wireless Access Systems; Amendment 3: Advanced Air Interface, IEEE-SA 802.16m, 2011.
[12] IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications, IEEE-SA 1901, 2010.
[13] A. I. V. Casado, M. Griot, and R. D.Wesel, “Informed dynamic scheduling for belief- propagation decoding of LDPC codes,” in Proc. of IEEE Int. Conf. Commun. (ICC), Glasgow, Scotland, Jun. 2007.
[14] A. I. V. Casado, M. Griot, and R. D. Wesel, “LDPC Decoders with Informed Dynamic Scheduling,” IEEE Trans. Commun., vol. 58, no. 12, pp. 3470-3479, Dec. 2010.
[15] D. -E. Hocevar, “A reduced complexity decoder architecture via layered decoding of LDPC codes,” in Proc. IEEE Workshop on Signal Processing Systems (SIPS), pp. 107-112, Oct. 2004.
[16] Y.-L. Wang, Y.-L. Ueng, C.-L. Peng, and C.-J.Yang, “Processing-task arrangement for a low-complexity full-mode WiMAX LDPC codec,” IEEE Trans. Circuits Syst. I, vol. 58, no. 2, pp. 415-428, Feb. 2011.
[17] J. Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,” IEEE Trans. Commun., vol. 53, no. 2, pp. 209-213, Feb. 2005.
[18] Y.-L. Ueng, C.-J. Yang, K.-C. Wang, and C.-J. Chen, “A multimode shuffled iterative decoder architecture for high-rate RS-LDPC codes,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 10, pp. 2790-2803, Oct. 2010.
[19] Y.-L. Ueng, B.-J. Yang, C.-J. Yang, H.-C. Lee, J.-D. Yang, “An efficient multi-standard LDPC decoder design using hardware-friendly shuffled decoding,” IEEE Trans. Circuits Syst. I, vol. 60, no. 3, pp. 743-756, Mar. 2013.
[20] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation: Informed scheduling for asynchronous message passing,” in Proc. 22nd Conf. Uncertainty Artificial Intelligence, MIT, Cambridge, MA, July 2006.
[21] H.-C. Lee, Y.-L. Ueng, S.-M. Yeh, W.-Y. Weng, “Two Informed Dynamic Scheduling Strategies for Iterative LDPC Decoders,” IEEE Trans. Commun., vol. 61, no. 3, pp. 886-896, Mar. 2013.
[22] R. M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533-547, Sep. 1981.
[23] M. P. C. Fossorier, M. Mihaljevic and H. Imai, “Reduced Complexity Iterative Decoding of Low-Density Parity Check Codes Based on Belief Propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673-680, May 1999.
[24] J.-H. Kim, M.-Y. Nam and H.-Y. Song, “Variable-to-check residual belief propagation for LDPC codes,” Electron. Lett., IET., vol. 45, no. 2, pp. 117-118, Jan. 2009.
[25] Y. Gong, X. Liu, W. Ye, and G. Han, “Effective Informed Dynamic Scheduling for Belief Propagation Decoding of LDPC Codes,” IEEE Trans. Commun., vol. 59, no. 10, pp. 2658- 2691, Oct. 2011.
[26] Y.-L. Ueng, Y.-L. Wang, L.-S. Kan, C.-J. Yang and Y.-H. Su, “Jointly Designed Architecture-Aware LDPC Convolutional Codes and Memory-based Shuffled Decoder Architecture,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4387-4402, Aug. 2012.
[27] IEEE 802.16 Broadband Wireless Access Working Group; Amendment Text Proposal on Rate Compatible LDPC-Convolutional Codes, IEEE-SA C802.16m-09/0339, Jan. 2009.
[28] C.-L. Chen, Y.-H. Lin, H.-C. Chang, C.-Y. Lee, “A 2.37-Gb/s 284.8 mW Rate-Compatible (491,3,6) LDPC-CC Decoder,” IEEE JSSC, vol. 47, no. 4, pp. 817-831, Apr. 2012.