簡易檢索 / 詳目顯示

研究生: 張文彥
論文名稱: 以分子動力學模擬預測短鏈聚苯乙烯之動態
Predicting short-chain polystyrene dynamics base on molecular dynamics simulations
指導教授: 張榮語
口試委員: 曾世昌
許嘉翔
黃世欣
吳建興
鍾文仁
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 76
中文關鍵詞: 分子動力學模擬聚苯乙烯苯環轉動鏈段鬆弛
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚苯乙烯的材料性質受到其主鏈與苯環運動的影響,分子內主鏈與苯環的交互作用支配著結構的鬆弛。已知剪切流動會影響直練分子的構型和原子分布,然而剪切所導致的鏈段鬆弛與苯環轉動變化尚未被探索完全。在本研究的第一部份,分子動力學模擬被用來探討主鏈與鏈段鬆弛和溫度、壓力以及剪切速率的相依性。結果顯示主鏈和鏈段的鬆弛具有相似的溫度、壓力和剪切速率相依性,然而在相依的程度上卻有所不同。在本研究的第二部份,非平衡分子動力學模擬被用來討論剪切流場對苯環轉動的效應。結果顯示當剪切速率小於1010s-1時,轉動自由能能障會趨於一個定值,剪切速率大於1010.5s-1時則隨著剪切速率增加而下降。值得注意的是,剪切流動會抑制苯環內各種鍵結的振動同時增加不同分子之間粒子對的距離。如此一來苯環發生轉動所需要的空穴體積變小,而空穴可佔有的體積變大;因此在剪切速率大於1010.5s-1時,需要靠主鏈運動來增加的體積下降,使得轉動自由能能障下降。


    摘要 I Abstract II 目錄 III 圖目錄 IV 表目錄 VII 符號與縮寫 VIII 第一章 緒論 1 第二章 文獻回顧 5 2.1 aPS鏈段鬆弛 5 2.2 aPS苯環轉動 9 2.3 MD模擬aPS局部動態 12 第三章 研究方法 17 3.1 aPS分子模型 17 3.2 MD模擬 21 3.3 系統與步驟 26 第四章 結果與討論 27 4.1 aPS主鏈鬆弛 27 4.2 aPS鏈段鬆弛 39 4.3 aPS苯環轉動 53 第五章 結論 70 參考文獻 71

    [1] R. B. Bird, Dynamics of polymeric liquids, 2nd ed. New York: Wiley, 1987.
    [2] V. A. Harmandaris, G. Floudas, and K. Kremer, "Temperature and pressure dependence of polystyrene dynamics through molecular dynamics simulations and experiments," Macromolecules, vol. 44, 393, 2011.
    [3] O. Yano and Y. Wada, "Dynamic mechanical and dielectric relaxations of polystyrene below glass temperature," Journal of Polymer Science Part a-2-Polymer Physics, vol. 9, 669, 1971.
    [4] S. Pawlus, K. Kunal, L. Hong, and A. P. Sokolov, "Influence of molecular weight on dynamic crossover temperature in linear polymers," Polymer, vol. 49, 2918, 2008.
    [5] A. V. Lyulin, N. K. Balabaev, and M. A. J. Michels, "Correlated segmental dynamics in amorphous atactic polystyrene: A molecular dynamics simulation study," Macromolecules, vol. 35, 9595, 2002.
    [6] D. J. Plazek, X. D. Zheng, and K. L. Ngai, "Viscoelastic properties of amorphous polymers .1. Different temperature dependences of segmental relaxation and terminal dispersion," Macromolecules, vol. 25, 4920, 1992.
    [7] Y. Meng and S. L. Simon, "Pressure relaxation of polystyrene and its comparison to the shear response," Journal of Polymer Science Part B-Polymer Physics, vol. 45, 3375, 2007.
    [8] Y. Matsumiya, A. Uno, H. Watanabe, T. Inoue, and O. Urakawa, "Dielectric and viscoelastic investigation of segmental dynamics of polystyrene above glass transition temperature: Cooperative sequence length and relaxation mode distribution," Macromolecules, vol. 44, 4355, 2011.
    [9] P. G. Santangelo and C. M. Roland, "Molecular weight dependence of fragility in polystyrene," Macromolecules, vol. 31, 4581, 1998.
    [10] C. M. Roland, P. G. Santangelo, M. Antonietti, and M. Neese, "Mechanical behavior of polystyrene microgels," Macromolecules, vol. 32, 2283, 1999.
    [11] F. H. Sanchez, J. M. M. Duenas, and J. L. G. Ribelles, "Influence of the molecular mass on the segmental relaxation times of polystyrene determined by dsc," Journal of Thermal Analysis and Calorimetry, vol. 72, 631, 2003.
    [12] P. Badrinarayanan and S. L. Simon, "Origin of the divergence of the timescales for volume and enthalpy recovery," Polymer, vol. 48, 1464, 2007.
    [13] A. K. Rizos and K. L. Ngai, "Local segmental dynamics of low molecular weight polystyrene: New results and interpretation," Macromolecules, vol. 31, 6217, 1998.
    [14] K. L. Ngai, "Mobility in thin polymer films ranging from local segmental motion, rouse modes to whole chain motion: A coupling model consideration," European Physical Journal E, vol. 8, 225, 2002.
    [15] C. M. Roland and R. Casalini, "Temperature dependence of local segmental motion in polystyrene and its variation with molecular weight," Journal of Chemical Physics, vol. 119, 1838, 2003.
    [16] G. A. Schwartz, J. Colmenero, and A. Alegria, "Dielectric study of the segmental relaxation of low and high molecular weight polystyrenes under hydrostatic pressure," Journal of Non-Crystalline Solids, vol. 353, 4298, 2007.
    [17] B. Frick, U. Buchenau, and D. Richter, "Boson peak and fast relaxation process near the glass-transition in polystyrene," Colloid and Polymer Science, vol. 273, 413, 1995.
    [18] A. V. Lyulin and M. A. J. Michels, "Large-scale computer simulation of local segmental dynamics in amorphous atactic polystyrene," Computer Physics Communications, vol. 147, 298, 2002.
    [19] V. A. Harmandaris and K. Kremer, "Predicting polymer dynamics at multiple length and time scales," Soft Matter, vol. 5, 3920, 2009.
    [20] T. Uemura, S. Horike, K. Kitagawa, M. Mizuno, K. Endo, S. Bracco, A. Comotti, P. Sozzani, M. Nagaoka, and S. Kitagawa, "Conformation and molecular dynamics of single polystyrene chain confined in coordination nanospace," Journal of the American Chemical Society, vol. 130, 6781, 2008.
    [21] S. Arrese-Igor, A. Arbe, B. Frick, and J. Colmenero, "Glassy dynamics of polystyrene by quasielastic neutron scattering," Macromolecules, vol. 44, 3161, 2011.
    [22] Q. Sun and R. Faller, "Crossover from unentangled to entangled dynamics in a systematically coarse-grained polystyrene melt," Macromolecules, vol. 39, 812, 2006.
    [23] B. Vorselaars, A. V. Lyulin, and M. A. J. Michels, "Development of heterogeneity near the glass transition: Phenyl-ring-flip motions in polystyrene," Macromolecules, vol. 40, 6001, 2007.
    [24] A. V. Lyulin, D. Hudzinskyy, E. Janiaud, and A. Chateauminois, "Competition of time and spatial scales in polymer glassy dynamics: Rejuvenation and confinement effects," Journal of Non-Crystalline Solids, vol. 357, 567, 2011.
    [25] J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. Iv. The equations of hydrodynamics," Journal of Chemical Physics, vol. 18, 817, 1950.
    [26] B. J. Alder and T. E. Wainwright, "Phase transition for a hard sphere system," Journal of Chemical Physics, vol. 27, 1208, 1957.
    [27] A. Rahman, "Correlations in motion of atoms in liquid argon," Physical Review a-General Physics, vol. 136, 405, 1964.
    [28] Stilling.Fh and A. Rahman, "Improved simulation of liquid water by molecular-dynamics," Journal of Chemical Physics, vol. 60, 1545, 1974.
    [29] J. Han, A. Globus, R. Jaffe, and G. Deardorff, "Molecular dynamics simulations of carbon nanotube-based gears," Nanotechnology, vol. 8, 95, 1997.
    [30] M. Matsumoto, S. Saito, and I. Ohmine, "Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing," Nature, vol. 416, 409, 2002.
    [31] A. V. Akimov, A. V. Nemukhin, A. A. Moskovsky, A. B. Kolomeisky, and J. M. Tour, "Molecular dynamics of surface-moving thermally driven nanocars," Journal of Chemical Theory and Computation, vol. 4, 652, 2008.
    [32] R. Khare and M. E. Paulaitis, "Molecular simulations of cooperative ring flip motions in single chains of polystyrene," Chemical Engineering Science, vol. 49, 2867, 1994.
    [33] R. Khare and M. E. Paulaitis, "A study of cooperative phenyl ring flip motions in glassy polystyrene by molecular simulations," Macromolecules, vol. 28, 4495, 1995.
    [34] R. F. Rapold, U. W. Suter, and D. N. Theodorou, "Static atomistic modeling of the structure and ring dynamics of bulk amorphous polystyrene," Macromolecular Theory and Simulations, vol. 3, 19, 1994.
    [35] Y. Y. He, T. R. Lutz, M. D. Ediger, C. Ayyagari, D. Bedrov, and G. D. Smith, "Nmr experiments and molecular dynamics simulations of the segmental dynamics of polystyrene," Macromolecules, vol. 37, 5032, 2004.
    [36] M. Mondello, H. J. Yang, H. Furuya, and R. J. Roe, "Molecular-dynamics simulation of atactic polystyrene .1. Comparison with x-ray-scattering data," Macromolecules, vol. 27, 3566, 1994.
    [37] A. L. Rabinovich, P. O. Ripatti, N. K. Balabaev, and F. A. M. Leermakers, "Molecular dynamics simulations of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to self-consistent field modeling," Physical Review E, vol. 67, 011909, 2003.
    [38] M. G. Martin and J. I. Siepmann, "Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes," Journal of Physical Chemistry B, vol. 102, 2569, 1998.
    [39] D. C. Rapaport, The art of molecular dynamics simulation. Cambridge ; New York: Cambridge University Press, 1995.
    [40] M. P. Allen and D. J. Tildesley, Computer simulation of liquids. Oxford England: Oxford University Press, 1987.
    [41] W. G. Hoover, "Canonical dynamics - equilibrium phase-space distributions," Physical Review A, vol. 31, 1695, 1985.
    [42] J. M. Haile, Molecular dynamics simulation : Elementary methods. New York: Wiley, 1992.
    [43] D. J. Evans, G. P. Morriss, and L. M. Hood, "On the number dependence of viscosity in 3 dimensional fluids," Molecular Physics, vol. 68, 637, 1989.
    [44] A. W. Lees and S. F. Edwards, "Computer study of transport processes under extreme conditions," Journal of Physics Part C Solid State Physics, vol. 5, 1921, 1972.
    [45] M. Doi and S. F. Edwards, The theory of polymer dynamics. Oxford: Clarendon Press, 1986.
    [46] J. D. Ferry, Viscoelastic properties of polymers, 3rd ed. New York: Wiley, 1980.
    [47] M. Mondello and G. S. Grest, "Viscosity calculations of n-alkanes by equilibrium molecular dynamics," Journal of Chemical Physics, vol. 106, 9327, 1997.
    [48] H. A. Barnes, J. F. Hutton, and K. Walters, An introduction to rheology. Amsterdam ; New York: Elsevier : Distributors for the U.S. and Canada, Elsevier Science Pub. Co., 1989.
    [49] P. G. Debenedetti, Metastable liquids : Concepts and principles. Princeton, N.J.: Princeton University Press, 1996.
    [50] D. A. McQuarrie, Statistical mechanics. Sausalito, Calif.: University Science Books, 2000.
    [51] M. L. Williams, R. F. Landel, and J. D. Ferry, "Mechanical properties of substances of high molecular weight .19. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids," Journal of the American Chemical Society, vol. 77, 1955.
    [52] D. Chandler, Introduction to modern statistical mechanics. New York: Oxford University Press, 1987.
    [53] S. N. Goyanes, "Dynamic mechanical behavior of atactic and high-impact polystyrene," Journal of Applied Polymer Science, vol. 75, 865, 2000.
    [54] M. Hattori, H. Li, H. Yamada, K. Akasaka, W. Hengstenberg, W. Gronwald, and H. R. Kalbitzer, "Infrequent cavity-forming fluctuations in hpr from staphylococcus carnosus revealed by pressure- and temperature-dependent tyrosine ring flips," Protein Science, vol. 13, 3104, 2004.
    [55] H. C. Tseng, R. Y. Chang, and J. S. Wu, "Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear," Journal of Chemical Physics, vol. 134, 044511, 2011.
    [56] Y. M. Tsai and R. Y. Chang, "Methyl branch effects on rheological behaviours of short-chain polypropylene under steady shear studied via nonequilibrium molecular dynamics simulations," Molecular Simulation, vol. 38, 124, 2012.
    [57] C. Baig and V. G. Mavrantzas, "Tension thickening, molecular shape, and flow birefringence of an h-shaped polymer melt in steady shear and planar extension," Journal of Chemical Physics, vol. 132, 014904, 2010.
    [58] J. Han and R. H. Boyd, "Molecular packing and small-penetrant diffusion in polystyrene: A molecular dynamics simulation study," Polymer, vol. 37, 1797, 1996.
    [59] J. T. Bosko, B. D. Todd, and R. J. Sadus, "Viscoelastic properties of dendrimers in the melt from nonequlibrium molecular dynamics," Journal of Chemical Physics, vol. 121, 12050, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE