簡易檢索 / 詳目顯示

研究生: 亞維傑
Avijit, Panja
論文名稱: 新型「抗癌複合藥物」之研發暨具光學活性 「3-吡咯啉」合成法之開創
Development of New Anticancer Codrugs and a Method for Synthesis of Optically Active 3-Pyrrolines
指導教授: 胡紀如
Hwu, Jih-Ru
口試委員: 陳貴通
Tan, Kui-Thong
蔡福源
Cai, FuYuan
謝發坤
Shieh, Fa-Kuen
許銘華
Hsu, Ming-Hua
蔡淑貞
Tsay, Shwu-Chen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 193
中文關鍵詞: 藥物傳遞藥物傳遞抗癌不對稱合成協同作用拮抗作用
外文關鍵詞: Drug delivery, Drug delivery, Anticancer, Asymmetric synthesis, Synergism, Antagonism
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來新穎藥物設計方法之開發,已成為全球最受關注,極具潛力之研究標的,人們開始研究如何利用各種高效率之合成法,以及不同藥物傳遞方式設計並製造高療效藥物。我們利用骨牌式反應及精準藥物傳遞設計高療效之抗癌複合藥物。骨牌式反應因其高產率且環保,一直為有機合成化學中之重要研究領域。藥物傳遞方式之研究探討將具生物活性之化合物準確送至人體患部,以提高藥效。
    我們所設計之新型抗癌複合藥物,包含四項關鍵部份:紫杉醇(抗癌藥物),來那度胺(具協同作用之免疫調節藥物),D-呋喃核糖(對人體無害之化學橋接基團),磷酸二酯部分則具有可控釋藥功能。此複合藥物之合成共7個步驟,總產率為33%。其對OECM1細胞之效力為8.82-9.93nM,對正常細胞的毒性為685.5->1000nM。其中磷酸二酯部分促進該藥物於正常細胞下抑制癌細胞之選擇性。複合藥物中來那度胺與紫杉醇之比例為1:1。與單一藥物相比,複合藥物之水溶性較好。複合藥物之協同作用從0.721-0.867顯著改善至0.336-0.395,拮抗作用適中(1.038-1.277)。此新型複合藥物之生物活性與單一藥物時相比提升近一百倍。
    不對稱合成是現代有機化學中之重要反應,骨牌式反應可提高效率,降低毒性,且過程環保。對合成化學家而言,分離出特定異構物仍然是一項艱鉅任務。因此,我們開發了一種新型骨牌式反應,於單一燒瓶中完成四個連續步驟,其利用(三甲基甲矽烷基)芳基三氟甲磺酸酯,席夫鹼和炔烴,成功合成出具有生物活性之3-吡咯啉。該等新反應產率極佳(75-87%),且生成單一異構產物,具高立體選擇性。該反應利用1,4-分子內質子轉移和Hüisgen 1,3-偶極環加成反應,及不對稱反應催化劑(R)-()-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate,得到高光學純度之鏡像異構產物,鏡像異構比例高達98.5:1.5。
    本篇論文探討了兩大重要主題,首先為新型複合藥物之設計與合成及其協同與拮抗作用之新發現。此外,我們利用「芐誘導反應」,成功研發出具光學活性「3-吡咯啉」之新合成方法。以上所述之豐富研究成果,可幫助學者專家們擬定藥物設計策略,並利用所發展之新合成法高效率研發及製造具生物活性化合物以對抗新興RNA病毒疾病。


    Novel design of highly efficient drugs for the treatment of various diseases poses a significant challenge and a high-priority task in medicinal chemistry. Therefore, the synthesis of biologically active compounds by use of various methods and modifications for the known medications are closely related to each other. Drug delivery and domino reactions both have their significant importance for medicinal and synthetic organic chemistry. Drug delivery refers to the transport of a biologically active compound to the target site in the body and have its desired therapeutic effect.
    Although the physical combination is efficient, only few codrugs possess anticancer activity without synergistic and antagonistic effects. We designed a novel anticancer codrug that contains four crucial elements: paclitaxel (a potent anticancer drug), lenalidomide (a immunomodulatory drug exerting synergistic effect), D-ribofuranose (a pharmacologically safe joint), and phosphodiester moiety as the trigger for the selective delivery. The synthesis of codrug involves seven steps in 33% overall yield. Its potency against OECM1 cells was found 8.82–9.93 nM and toxicity toward normal cells was 685.5 – >1000 nM. The phosphodiester moiety therein facilitates this drug to exhibit appealing selectivity against cancer cells in the presence of normal cells. Water solubility of codrug increased compared with the individual drugs. The synergism of codrug is significantly improved from 0.721–0.867 to 0.336–0.395 in comparison with the physical combination of lenalidomide with paclitaxel in a 1:1 ratio. The breakthrough in biological activity is that the antagonism is moderate (1.038–1.277) for the physical combination. It is raised greatly in two-order higher (40.01–130.9).
    Enantioselective synthesis is a key process in modern organic chemistry. In the past decade, asymmetric catalysis has grown rapidly to become one of the most fascinating and current fields in organic chemistry. Increased efficiency, reduced toxicity and eco-friendly process are some of the striking features of domino reaction. Isolation of a particular isomer still remains a difficult task for the synthetic chemists. Therefore, we developed a domino reaction for the synthesis of 3-pyrrolines, a class of compounds with biological activities, directly from (trimethylsilyl)aryl triflates, Schiff bases, and alkynes by an eco-friendly method. The key features of this new reaction include the generation of a single product in very good yields (7587%) with high stereo- and enantio-selectivity. The reaction involves completion of four sequential steps in a single flask, which are formation of arynes, their alkylation by Schiff bases, an unusual 1,4-intramolecular proton transfer, and a Hüisgen 1,3-dipolar cycloaddition. The addition of the chiral catalyst (R)-()-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate to some of the reaction mixtures leads to the formation of optically active 3-pyrrolines with enantiomeric ratio as high as 98.5:1.5.
    Two major challenges are discussed and addressed in this dissertation. These includes the design and syntheses of novel codrugs and new findings of synergism and antagonism effects of the new drug conjugates. On the other hand, development of a method for the synthesis of optically active 3-pyrrolines by benzyne-induced reactions. These results and compounds provide a way for further optimization, design, and synthesis of new biologically active compounds for the emerging RNA viral diseases.

    Abstract (in English) i Abstract (in Chinese) iii Acknowledgement v Content vii List of Figures ..xxiii List of Tables xxiv List of Schemes xxv 1. Introduction 1 2. Results 14 2.1 Synthesis of codrug 1 starting with paclitaxel (3) 14 2.2 Synthesis of codrug 1 starting with lenalidomide derivative 19 16 2.3 The successful synthesis of the codrug 1 17 2.3.1 Attachment of two anticancer drugs on ribose core unit 17 2.3.2 Attachment of cyclic phosphate ester on ribose core unit 18 2.4 Spectroscopic analysis for the structure identification of codrug 1 19 2.5 Hydrolysis study of the codrug 1 and liberation of lenalidomide (2), paclitaxel (3), and D-ribose (4) 20 2.6 Establishment of drug release mechanism from hydrolysis graph 21 2.7 Biological activities against OECM1 cancer cells and normal Huvec cells 23 2.8 Synthesis of 3-pyrrolines from silylaryl triflates 29, Schiff bases 30, and alkynes 31 26 2.9 Optimization of reaction condition for the syntheses of 3-pyrroline 32 27 2.10 Syntheses of various substituted 3-pyrrolines 28 2.11 Optimization Conditions for Asymmetric Synthesis of 3-Pyrroline 32n 33 2.12 Development of sustainable method for the synthesis of 3-pyrrolines 32 40 2.13 Spectroscopic analysis for the structure identification of 3-pyrroline 32e 40 3. Discussion 42 3.1 Determination of synergism and antagonism 42 3.2 Plausible mechanism for the synthesis of 3-pyrroline 32 43 3.3 Catalyst used in aryne-induced reaction to generate important products 46 3.4 Identification of asymmetric induction step and particular catalyst for the synthesis of optically active 3-pyrrolines 47 3.5 Plausible mechanism for asymmetric induction to generate optically active 3-pyrrolines 49 4. Conclusion 51 5. Experimental 53 2,3-O-benzylidene-5-(4-nitrophenyl-oxycarbonyl)oxymethyl-oxolane-1-ol (15) 55 2,3-O-benzylidene-5-(2ʹ-Paclitaxeyl-oxycarbonyl)oxymethyl-oxolane-1-ol (16) 56 2,3-O-benzylidene-1-(4-nitrophenyl-oxycarbonyl)oxy-5-(2ʹ-Paclitaxeyl-oxycarbonyl)oxy- oxolane (17) 57 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl-oxolane-1-ol (20) 58 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine (carbamoyl)oxymethyl-2,3-hydrogenphosphate-oxolane-1-ol (21) 59 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)- piperidine-(carbamoyl)oxymethyl-oxolane-1-ol (23) 60 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)- piperidine-(carbamoyl)oxymethyl)-1-(4-nitrophenyl-oxycarbonyl)oxy-oxolane (24) 61 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)- piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane (25) 62 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2,3-diol (26) 64 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) 65 Standard Procedure 1 for the Preparation of Schiff Bases 66 Standard Procedure 2 for the Single-Flask Synthesis of 3-Pyrrolines 67 Standard Procedure 3 for Asymmetric Synthesis of Optically Active 3-Pyrrolines 67 Standard Procedure 4 for the Sustainable Synthetic Route of 3-Pyrrolines 67 Standard Procedure 5 for the Sustainable Synthetic Route of Optically Active 3-Pyrrolines 68 (E)-Methyl N-(3-bromobenzylidene)--alanate (30d) 68 (E)-N-(4-Methylbenzylidene)-(2-methoxy)ethan-1-amine (30e) 69 (E)-N-(4-Methoxybenzylidene)-(2-methoxy)ethan-1-amine (30f) 69 (E)-N-(4-Methoxybenzylidene)-(2-cyano)ethan-1-amine (30g) 70 cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-phenyl-N-phenyl-3-pyrroline (32a) 71 cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-phenyl-N-phenyl- 3-pyrroline (32b) 72 cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methylphenyl)-N- phenyl-3-pyrroline (32c) 73 cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methylphenyl)-N-phenyl -3-pyrroline (32d) 74 cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methoxyphenyl)-N-phenyl- 3-pyrroline (32e) 75 cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methoxyphenyl)-N-phenyl- 3-pyrroline (32f) 77 cis-2-(3''-Bromophenyl)-3,4-dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-N-phenyl- 3-pyrroline (32g) 78 cis-2-(3''-Bromophenyl)-3,4-diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-N-phenyl- 3-pyrroline (32h) 79 cis-2-(3''-Bromophenyl)-3-ethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-N-phenyl- 3-pyrroline (32i) 80 cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl- 3-pyrroline (32j) 81 cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl- 3-pyrroline (32k) 83 cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl- 3-pyrroline (32l) 85 cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl- 3-pyrroline (32m) 86 cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl- 3-pyrroline (32n) 87 cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl- 3-pyrroline (32o) 89 cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl- 3-pyrroline (32p) 91 cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl- 3-pyrroline (32q) 92 cis-3,4-Diethoxycarbonyl-N-3′′′,4′′′-dimethoxyphenyl-5-(1′-methoxymethyl)- 2-(4′′-methoxyphenyl)-3-pyrroline (32r) 94 cis-N-(Benzo[d][1''',3''']dioxol-5'''-yl)-3,4-dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)- 2-(4''-methoxyphenyl)-3-pyrroline (32s) 96 cis-5-(1′-Cyanomethyl)-3,4-diethoxycarbonyl-2-(4′′-methoxyphenyl)-N-phenyl- 3-pyrroline (32t) 97 Large-Scale Synthesis of Optically Active 3-Pyrrolines 32n and 32o as well as Catalyst Recovery 100 Calculation of Atom Economy and Atom Efficiency for the 3-Pyrroline (4n) 101 6. References 101 7. Spectra 110 1H NMR spectrum of 2,3-O-benzylidene-5-(4-nitrophenyl-oxycarbonyl)oxymethyl-oxolane-1-ol (15) 111 HRMS spectrum of 2,3-O-benzylidene-5-(4-nitrophenyl-oxycarbonyl)oxymethyl- oxolane-1-ol (15) 111 1H NMR spectrum of 2,3-O-benzylidene-5-(2ʹ-Paclitaxeyl-oxycarbonyl)oxymethyl-oxolane-1-ol (16) 112 HRMS spectrum of 2,3-O-benzylidene-5-(2ʹ-Paclitaxeyl-oxycarbonyl)oxymethyl- oxolane-1-ol (16) 112 1H NMR spectrum of 2,3-O-benzylidene-1-(4-nitrophenyl-oxycarbonyl)oxy-5-(2ʹ-Paclitaxeyl-oxycarbonyl)oxy-oxolane (17) 113 HRMS spectrum of 2,3-O-benzylidene-1-(4-nitrophenyl-oxycarbonyl)oxy-5-(2ʹ- Paclitaxeyl-oxycarbonyl)oxy-oxolane (17) 113 1H NMR spectrum of 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl-oxolane-1-ol (20) 114 HRMS spectrum of 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl-oxolane-1-ol (20) 114 1H NMR spectrum of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl-2,3-hydrogenphosphate-oxolane-1-ol (21) 115 HRMS spectrum of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)- piperidine-(carbamoyl)oxymethyl-2,3-hydrogenphosphate-oxolane-1-ol (21) 115 1H NMR spectrum of 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl-oxolane-1-ol (23) 116 13C NMR spectrum of 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl-oxolane-1-ol (23) 116 1H NMR spectrum of 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(4-nitrophenyl-oxycarbonyl) oxy-oxolane (24) 117 13C NMR spectrum of 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(4-nitrophenyl-oxycarbonyl) oxy-oxolane (24) 117 1H NMR spectrum of 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl )oxy-oxolane (25) 118 13C NMR spectrum of 2,3-O-benzylidene-5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl) oxy-oxolane (25) 118 HRMS spectrum of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2,3-diol (26) 119 1H NMR spectrum of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) 119 13C NMR spectrum of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) 120 31P NMR spectrum of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) 120 1H NMR spectrum of (E)-Methyl N-(3-bromobenzylidene)--alanate (30d) 121 13C NMR spectrum of (E)-Methyl N-(3-bromobenzylidene)--alanate (30d) 121 1H NMR spectrum of (E)-N-(4-Methylbenzylidene)-(2-methoxy)ethan-1-amine (30e) 122 13C NMR spectrum of (E)-N-(4-Methylbenzylidene)-(2-methoxy)ethan-1-amine (30e) 122 1H NMR spectrum of (E)-N-(4-Methoxybenzylidene)-(2-methoxy)ethan-1-amine (30f) 123 13C NMR spectrum of (E)-N-(4-Methoxybenzylidene)-(2-methoxy)ethan-1-amine (30f) 123 1H NMR spectrum of (E)-N-(4-Methoxybenzylidene)-(2-cyano)ethan-1-amine (30g) 124 13C NMR spectrum of (E)-N-(4-Methoxybenzylidene)-(2-cyano)ethan-1-amine (30g) 124 1H NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-phenyl -N-phenyl-3-pyrroline (32a) 125 13C NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-phenyl- N-phenyl-3-pyrroline (32a) 125 1H NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-phenyl- N-phenyl-3-pyrroline (32b) 126 13C NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-phenyl- N-phenyl-3-pyrroline (32b) 126 1H NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methylphenyl)-N-phenyl-3-pyrroline (32c) 127 13C NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methylphenyl)-N-phenyl-3-pyrroline (32c) 127 1H NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methylphenyl)-N-phenyl-3-pyrroline (32d) 128 13C NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methylphenyl)-N-phenyl-3-pyrroline (32d) 128 1H NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methoxyphenyl)-N-phenyl-3-pyrroline (32e) 129 13C NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methoxyphenyl)-N-phenyl-3-pyrroline (32e) 129 1H NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methoxyphenyl)-N-phenyl-3-pyrroline (32f) 130 13C NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-2-(4''-methoxyphenyl)-N-phenyl-3-pyrroline (32f) 130 1H NMR spectrum of cis-2-(3''-Bromophenyl)-3,4-dimethoxycarbonyl-5-(2'-methoxy -2'-oxoethyl)-N-phenyl-3-pyrroline (32g) 131 13C NMR spectrum of cis-2-(3''-Bromophenyl)-3,4-dimethoxycarbonyl-5-(2'-methoxy -2'-oxoethyl)-N-phenyl-3-pyrroline (32g) 131 1H NMR spectrum of cis-2-(3''-Bromophenyl)-3,4-diethoxycarbonyl-5-(2'-methoxy- 2'-oxoethyl)-N-phenyl-3-pyrroline (32h) 132 13C NMR spectrum of cis-2-(3''-Bromophenyl)-3,4-diethoxycarbonyl-5-(2'-methoxy- 2'-oxoethyl)-N-phenyl-3-pyrroline (32h) 132 1H NMR spectrum of cis-2-(3''-Bromophenyl)-3-ethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-N-phenyl-3-pyrroline (32i) 133 13C NMR spectrum of cis-2-(3''-Bromophenyl)-3-ethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl)-N-phenyl-3-pyrroline (32i) 133 1H NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32j) 134 13C NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32j) 134 1H NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32k) 135 13C NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32k) 135 1H NMR spectrum of cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′- methylphenyl)-N-phenyl-3-pyrroline (32l) 136 13C NMR spectrum of cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′- methylphenyl)-N-phenyl-3-pyrroline (32l) 136 1H NMR spectrum of cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′- methylphenyl)-N-phenyl-3-pyrroline (32m) 137 13C NMR spectrum of cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′- methylphenyl)-N-phenyl-3-pyrroline (32m) 137 1H NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32n) 138 13C NMR spectrum of cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32n) 138 1H NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32o) 139 13C NMR spectrum of cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32o) 139 1H NMR spectrum of cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32p) 140 13C NMR spectrum of cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32p) 140 1H NMR spectrum of cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′- methoxyphenyl)-N-phenyl-3-pyrroline (32q) 141 13C NMR spectrum of cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′- methoxyphenyl)-N-phenyl-3-pyrroline (32q) 141 1H NMR spectrum of cis-3,4-Diethoxycarbonyl-N-3′′′,4′′′-dimethoxyphenyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-3-pyrroline (32r) 142 13C NMR spectrum of cis-3,4-Diethoxycarbonyl-N-3′′′,4′′′-dimethoxyphenyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-3-pyrroline (32r) 142 1H NMR spectrum of cis-N-(Benzo[d][1''',3''']dioxol-5'''-yl)-3,4-dimethoxycarbonyl- 5-(2'-methoxy-2'-oxoethyl)-2-(4''-methoxyphenyl)-3-pyrroline (32s) 143 13C NMR spectrum of cis-N-(Benzo[d][1''',3''']dioxol-5'''-yl)-3,4-dimethoxycarbonyl- 5-(2'-methoxy-2'-oxoethyl)-2-(4''-methoxyphenyl)-3-pyrroline (32s) 143 1H NMR spectrum of cis-5-(1′-Cyanomethyl)-3,4-diethoxycarbonyl-2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32t) 144 13C NMR spectrum of cis-5-(1′-Cyanomethyl)-3,4-diethoxycarbonyl-2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32t) 144 8. HPLC Chromatogram 145 HPLC chromatogram for enatioenriched 2,3-O-benzylidene-5-(N-(2-(2,6- dioxopiperidine-3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(4-nitrophenyl-oxycarbonyl)oxy-oxolane (24) 146 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine- 3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 0 h 147 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine- 3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 6.0 h 148 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine- 3-yl)-1-oxoisoindoline-4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 12 h 149 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline -4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 18 h 150 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline -4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 24 h 151 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline -4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 30 h 152 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline -4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 36 h 153 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline -4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 42 h 154 HPLC chromatogram for hydrolysis of 5-(N-(2-(2,6-dioxopiperidine-3-yl)-1-oxoisoindoline -4-yl)-piperidine-(carbamoyl)oxymethyl)-1-(2’-Paclitaxeyl-oxycarbonyl)oxy-oxolane-2-3-ammonium phosphate (1) after 48 h 155 HPLC chromatogram for racemic cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'- oxoethyl)-2-(4''-methylphenyl)-N-phenyl-3-pyrroline (32c) 156 HPLC chromatogram for enatioenriched cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy- 2'-oxoethyl)-2-(4''-methylphenyl)-N-phenyl-3-pyrroline (32c) 157 HPLC chromatogram for racemic cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl) -2-(4''-methylphenyl)-N-phenyl-3-pyrroline (32d) 158 HPLC chromatogram for enatioenriched cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'- oxoethyl)-2-(4''-methylphenyl)-N-phenyl-3-pyrroline (32d) 159 HPLC chromatogram for racemic cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl) -2-(4''-methoxyphenyl)-N-phenyl-3-pyrroline (32e) 160 HPLC chromatogram for enatioenriched cis-3,4-Dimethoxycarbonyl-5-(2'-methoxy-2'- oxoethyl)-2-(4''-methoxyphenyl)-N-phenyl-3-pyrroline (32e) 161 HPLC chromatogram for racemic cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'-oxoethyl) -2-(4''-methoxyphenyl)-N-phenyl-3-pyrroline (32f) 162 HPLC chromatogram for enatioenriched cis-3,4-Diethoxycarbonyl-5-(2'-methoxy-2'- oxoethyl)-2-(4''-methoxyphenyl)-N-phenyl-3-pyrroline (32f) 163 HPLC chromatogram for racemic cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32j) 164 HPLC chromatogram for enatioenriched cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl)-2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32j) 165 HPLC chromatogram for racemic cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl)-2- (4′′-methylphenyl)-N-phenyl-3-pyrroline (32k) 166 HPLC chromatogram for enatioenriched cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl) -2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32k) 167 HPLC chromatogram for racemic cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2- (4′′-methylphenyl)-N-phenyl-3-pyrroline (32l) 168 HPLC chromatogram for enatioenriched cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)- 2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32l) 169 HPLC chromatogram for racemic cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)-2- (4′′-methylphenyl)-N-phenyl-3-pyrroline (32m) 170 HPLC chromatogram for enatioenriched cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)- 2-(4′′-methylphenyl)-N-phenyl-3-pyrroline (32m) 171 HPLC chromatogram for racemic cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl) -2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32n) 172 HPLC chromatogram for enatioenriched cis-3,4-Dimethoxycarbonyl-5-(1′-methoxymethyl) -2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32n) 173 HPLC chromatogram for racemic cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl)- 2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32o) 174 HPLC chromatogram for enatioenriched cis-3,4-Diethoxycarbonyl-5-(1′-methoxymethyl) -2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32o) 175 HPLC chromatogram for racemic cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2- (4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32p) 176 HPLC chromatogram for racemic cis-3-Methoxycarbonyl-5-(1'-methoxymethyl)-2- (4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32p) 177 HPLC chromatogram for racemic cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)-2-(4′′- methoxyphenyl)-N-phenyl-3-pyrroline (32q) 178 HPLC chromatogram for enatioenriched cis-3-Ethoxycarbonyl-5-(1'-methoxymethyl)- 2-(4′′-methoxyphenyl)-N-phenyl-3-pyrroline (32q) 179 HPLC chromatogram for racemic cis-3,4-Diethoxycarbonyl-N-3′′′,4′′′- dimethoxyphenyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-3-pyrroline (32r) 180 HPLC chromatogram for enatioenriched racemic cis-3,4-Diethoxycarbonyl-N-3′′′,4′′′- dimethoxyphenyl-5-(1′-methoxymethyl)-2-(4′′-methoxyphenyl)-3-pyrroline (32r) 181 9. Crystallographic data 182 List of Figures Figure 1. Diagrammatic representation of codrug action 2 Figure 2. Major advantages of codrug 3 Figure 3. Marketed codrugs for various diseases 4 Figure 4. Codrugs possess anticancer activity 5 Figure 5. C-3 carbon of piperidine-2,6-dione undergoes recemization 7 Figure 6. 3-Pyrrolines family shows various bioactivities 10 Figure 7. Nine conventional methods and a novel domino asymmetric method (red arrows) for the syntheses of 3-pyrroline targets 11 Figure 8. Novel domino reaction for the syntheses of 3-pyrrolines and its asymmetric induction 14 Figure 9. Hydolysis of codrug 1 and determination of the half-life (t1/2) period 20 Figure 10. Catalysts used for establishment of asymmetric induction for 3-pyrrolines 33 Figure 11. ORTEP diagram of compound 32e, obtained by X-ray analysis 41 List of Tables Table 1. IC50 (nM), values of co-drug 1, its major intermediate, individual drugs and, physical combination 1:1 individual drugs 22 Table 2. Ratio of IC50 values for different drugs on the same cell lines after 24 and 48 h 25 Table 3. Potency versus toxicity of various drugs for different cell lines after incubation of drugs 25 Table 4. Optimization of yield for reaction 29a + 30c + 31a  32e in Scheme 12 by use of various solvents, fluorides, temperatures, and reaction times 28 Table 5. Structures of reactants 29–31 and products cis-3-pyrrolines 32 as well as the isolated yields of newly developed domino reaction 29 Table 6. Optimization conditions of asymmetric synthesis of 3-pyrroline 32n by use of various metal salts, chiral catalysts, solvents, temperatures, and reaction times 34 Table 7. Reaction times, yields, and %ee of asymmetric synthesis of cis-3-pyrrolines 32 with 10 mol% of (R)-()-BNPPA (35a) in domino reactions 38 Table 8. Optimization conditions of asymmetric synthesis of 3-pyrroline 32n by use of various chiral catalysts, additives, solvents, temperatures, and reaction times 39 Table 9. Description of synergism and antagonism effects in codrug 1 combination drugs 2 + 4 (1:1) and conjugated drug (18) analyzed with the combination index method after 24 and 48 h 43 Table 10. Hydrolysis study of codrug 1 determination of area percentage from HPLC analysis in 048 h 99 List of Schemes Scheme 1. Design of the new codrug 1 and functions of each components 6 Scheme 2. Olefin metathesis by ruthenium-phosphabicyclononane complex 11 Scheme 3. Asymmetric intermolecular Heck reaction of aryl halides for the syntheses of 3-pyrrolies 12 Scheme 4. Representative reactions of arynes 13 Scheme 5. Attempt to synthesize codrug 1 starting with paclitaxel (4) 15 Scheme 6. Attempt to synthesize codrug 1 starting with a lenalidomide derivative 19 16 Scheme 7. Successful attachment of two drugs on ribose and synthesis of conjugate drug 25 17 Scheme 8. Installation of cyclic phosphate ester on ribose C-2’ and C-3’ position to obtained codrug 1 18 Scheme 9. Drug release mechanism of codrug 1 21 Scheme 10. Syntheses of cis-3-pyrrolines 32 from (trimethylsilyl)aryl triflates 29 Schiff bases 30, and alkynes 31 by a “single-flask” method 26 Scheme 11. Optimization conditions for the synthesis of 3-pyrroline 32e 27 Scheme 12. A plausible mechanism for the synthesis of 3-pyrrolines 32 from -silylphenyl triflates 29, Schiff bases 30, and alkynes 31 through a domino process 44 Scheme 13. Imine alkylation through intermolecular proton transfer 46 Scheme 14. Use of palladium catalyst in the aryne-induced reaction 47 Scheme 15. Use of copper catalyst in the aryne-induced reaction 47 Scheme 16. Mechanistic explanation of enantioselective [3 + 2] dipolar cycloaddition catalyzed by (R)-BNPPA (35a) to generate cis-3-pyrrolines in optically active form 50 Scheme 17. Syntheses of new Schiff bases 30 from aldehydes 52 and amines 53 66

    (1) Tallarida, R. J. Genes Cancer. 2011, 3, 10031008.
    (2) Foucquier, J.; Guedj, M. Pharma. Res. Per. 2015, 3, e00149.
    (3) Chou, T.-C. Pharmacol Rev. 2006, 58, 621681.
    (4) Bigioni, M.; Benzo, A.; Irrissuto, C.; Lopez, G.; Curatella, B.; Maggi, C. A. Cancer Chemother. Pharmacol. 2008, 62, 6219.
    (5) Lenz, T. L.; Hilleman, D. E.; Ann. Pharmacother. 2000, 34, 12831290.
    (6) Breeze, S. Expert Rev Clin. Pharmacol. 2012, 5, 613615.
    (7) Liu, Y.; Hu, B.; Fu, C.; Chen, X. Bioinformatics. 2010, 26, 587588.
    (8) Albers, G. W.; Amarenco, P. Stroke. 2001, 32, 29482949.
    (9) Bezin, J.; Pariente, A.; Lassalle, R.; Dureau-Pournin, C.; Abouelfath, A.; Robinson, P. Eur. J. Clin. Pharmacol. 2014, 70, 429436.
    (10) Singh, S.; Bouzinbi, N.; Chaturvedi, V.; Godreuil, S.; Kremer, L. Clin. Microbiol. Infect. 2014, 20, 11241127.
    (11) Lee, H. Z.; Miller, B.W.; Kwitkowski, V. E.; Ricci, S.; DelValle, P.; Saber, H. Clin. Cancer Res. 2014, 20, 39023907.
    (12) Patankar, N. A.; Pritchard, J.; van Grinsven, M.; Osooly, M.; Bally, M. B. Clin. Cancer Res. 2013, 19, 865877.
    (13) Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. J. Med. Chem. 2008, 51, 347372.
    (14) Bhosle, D.; Bharambe, S.; Gairola, N.; Dhaneshwar, S. S. Indian J. Pharm. Sci. 2006, 68, 286294.
    (15) Baltzer, B.; Binderup, E.; Daehne, W. V.; Godtfredsen, W. O.; Kansen. K.; Nielsen, B.;
    Sorensen. H.; Vangedal, S. J. Antibiot. 1980, 33, 11831192.
    (16) Jones, R. N. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 4358.
    (17) Svartz, N. Acta. Med. Scand. 1942, 110, 577598.
    (18) Croft, D. N.; Cuddigan, J. H.; Sweetland, C. Br. Med. J. 1972, 3, 545547.
    (19) Adnan, S.; Paterson, D. L.; Lipman, J.; Roberts, J. A. Int. J. Antimicrob. Ag. 2013, 42, 384389.
    (20) Katselou, M.; Papoutsis, I.; Nikolaou, P.; Qammaz, S.; Spiliopoulou, C.; Athanaselis, S. Basic Clin. Pharmacol. Toxicol. 2016, 119, 133140.
    (21) Gottesman, M. M. Annu. Rev. Med. 2002, 53, 615627.
    (22) Foo, J.; Michor, F. PLoS Comput. Biol. 2009, 5, e1000557.
    (23) Das, N.; Dhanawat, M.; Dash, B.; Nagarwal, R. C.; Shrivastava, S. K. Eur. J. Pharm. Sci. 2010, 41, 571588.
    (24) Syed, Y. Y. Drugs. 2017, 13, 14731480.
    (25) Mathew, P.; Tannir, N.; Tu, S. M.; Carter, C. M.; Bekele, N. B.; Pagliaro, L. Cancer Chemother. Pharmacol. 2010, 65, 811815.
    (26) Dimopoulos, M.; Spencer, A.; Attal, M. N. Engl. J. Med. 2007, 357, 21232132.
    (27) Richardson, P. G.; Weller, E.; Lonial, S.; Jakubowiak, A. J.; Jagannath, S.; Raje, N. S.; Avigan, D. E.; Xie, W.; Ghobrial, I. M.; Schlossman, R. L.; Mazumder, A.; Munshi, N. C.; Vesole, D. H.; Joyce, R.; Kaufman, J. L.; Doss, D.; Warren, D. L.; Lunde, L. E.; Kaster, S.; DeLaney, C.; Hideshima, T.; Mitsiades, C. S.; Knight, R.; Esseltine, D.-L.; Anderson, K.C. Blood. 2010, 116, 679686.
    (28) Amraoui, K.; Belhadj, K.; Maître, B.; Jannière-Nartey, C.; Dupuis, J. Eur. Respir. J. 2013, 22, 9395.
    (29) Richardson, P. G.; Mitsiades, C.; Hideshima, T.; Anderson, K. C. Exp. Rev. Anticancer Ther. 2006, 6, 11651173..
    (30) Walz, S.; Weis, S.; Franz. M.; Rominger, F.; Trapp, O. Electrophoresis. 2015, 36, 796804.
    (31) Szabó, Z.-I.; Foroughbakhshfasaei, M.; Gál, R.; Horváth, P.; Komjáti, B.; Noszál, B.; Tóth, G. J. Sep. Sci. 2018, 41, 1414-1423.
    (32) Jacquesa, V.; Czarnika, A. W.; Judgeb, T. M.; Van der Ploega, L. H. T.; DeWitta, D. R. Proc. Natl. Acad. Sci. U S A. 2015, 112, e14711479.
    (33) Wei, Y.; Pu, X.; and Zhao, L. Oncol. Rep. 2017, 37, 31593166.
    (34) Meng, Z.; Lv, Q.; Lu, J.; Yao, H.; Lv, X.; Jiang, F.; Lu, A.; Zhang, G. Int. J. Mol. Sci. 2016, 17, 796.
    (35) Marupudi, N. I.; Han, J. E.; Li, K. W.; Renard, V. M.; Tyler, B. M.; Brem, H. Expert Opin. Drug Saf. 2007, 6, 609621.
    (36) Dugas, H.; Penney, C. In Bioorganic Chemistry, A Chemical Approach to Enzyme Action; Cantor, C. R., Eds.; SpringerVerlag: Berlin, 1981; p 36.
    (37) Tietze, L. F. Chem. Rev. 1996, 96, 115136.
    (38) Padwa, A. Chem. Soc. Rev. 2009, 38, 30723081.
    (39) Ardkhean, R.; Caputo, D. F. J.; Morrow, S. M.; Shi, H.; Xiong, Y.; Anderson, E. A. Chem. Soc. Rev. 2016, 45, 15571569.
    (40) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237294.
    (41) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 15701581.
    (42) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167178.
    (43) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993–3009.
    (44) Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 5180.
    (45) Halpern, J.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5347.
    (46) Green, M. P.; Prodger, J. C.; Hayes, C. J. Tetrahedron Lett. 2002, 43, 66096611.
    (47) Chogii, I.; Njardarson, J. T. Angew. Chem. Int. Ed. 2015, 54, 1370613710.
    (48) Di Bussolo, V.; Frau, I.; Crotti, S.; Uccello-Barretta, G.; Balzano, F.; Pineschi, M.; Crotti, P. Org. Lett. 2013, 15, 60266029.
    (49) Shi, F.; Xing, G.-J.; Tan, W.; Zhu, R.-Y.; Tu, S. Org. Biomol. Chem. 2013, 11, 14821489.
    (50) Wang, Y.-X.; Mabic, S.; Castagnoli Jr, N. Bioorg. Med. Chem. 1998, 6, 143149.
    (51) Lange, U. E. W.; Baucke, D.; Hornberger, W.; Mack, H.; Seitz, W.; Höffken, H. W. Bioorg. Med. Chem. Lett. 2006, 16, 26482653.
    (52) Lee, Y.; Ling, K.-Q.; Lu, X.; Silverman, R. B.; Shepard, E. M.; Dooley, D. M.; Sayre, L. M. J. Am. Chem. Soc. 2002, 124, 1213512143.
    (53) Mou, Q.-Y.; Chen, J.; Zhu, Y.-C.; Zhou, D.-H.; Chi, Z.-Q.; Long, Y.-Q. Bioorg. Med. Chem. Lett. 2002, 12, 22872290.
    (54) Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Coleman, P. J.; Garbaccio, R. M.; Fraley, M. E.; Zrada, M. M.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; Lobell, R. B.; Tao, W.; Abrams, M. T.; South, V. J.; Huber, H. E.; Kohl, N. E.; Hartman, G. D. Bioorg. Med. Chem. Lett. 2007, 17, 26972702.
    (55) Brichacek, M.; Njardarson, J. T. Org. Biomol. Chem. 2009, 7, 17611770.
    (56) Kagoshima, H.; Akiyama, T. J. Am. Chem. Soc. 2000, 122, 1174111742.
    (57) Sai, M.; Matsubara, S. Org. Lett. 2011, 13, 46764679.
    (58) Zhu, X.-F.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 62766282.
    (59) Li, G.-Y.; Chen, J.; Yu, W.-Y.; Hong, W.; Che, C.-M. Org. Lett. 2003, 5, 21532156.
    (60) Zhang, D.-H.; Yao, L.-F.; Wei, Y.; Shi, M. Angew. Chem. Int. Ed. 2011, 50, 25832587.
    (61) Ma, L.; Li, W.; Xi, H.; Bai, X.; Ma, E.; Yan, X.; Li, Z. Angew. Chem. Int. Ed. 2016, 55, 1041010413.
    (62) Boeda, F., Clavier, H.; Jordaan, M.; Meyer, W. H.; Nolan, S. P. J. Org. Chem. 2008, 73, 259263.
    (63) Wu, C.; Zhou, J. J. Am. Chem. Soc. 2014, 136, 650652.
    (64) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 31403152.
    (65) E. Yoshikawa, K. V. Radhakrishnan and Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 72807286.
    (66) Du, C.-J. F.; Hart, H.; Ng, K.-K. D. J. Org. Chem. 1986, 51, 31623165.
    (67) Dubrovskiy, A. V.; Markina N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191218.
    (68) Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am. Chem. Soc. 2006, 128, 74267427.
    (69) Yoshioka, E.; Kohtani, S.; Miyabe, H. Molecules 2014, 19, 863880.
    (70) Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am. Chem. Soc. 2015, 137, 56705673.
    (71) Castillo, J.-C.; Quiroga, J.; Abonia, R.; Rodriguez, J.; Coquerel, Y. Org. Lett. 2015, 17, 33743377.
    (72) Qiu, D.; He, J.; Yue, X.; Shi, J.; Li, Y. Org. Lett. 2016, 18, 31303133.
    (73) Hwu, J. R.; Hsu, Y. C. Chem. Eur. J. 2011, 17, 47274731.
    (74) Hwu, J. R.; Chandrasekhar, D. B.; Hwang, K. C.; Lin, C.-C.; Horng, J.-C.; Shieh, F.-K. ChemistryOpen 2017, 6, 331335.
    (75) Hsu, Y. C.; Hwu, J. R. Chem. Eur. J. 2012, 18, 76867690.
    (76) Hwu, J. R.; Swain, S. P. Chem. Eur. J. 2013, 19, 65566560.
    (77) Swain, S. P.; Shih, Y.-C.; Tsay, S.-C.; Jacob, J.; Lin, C.-C.; Hwang, K. C.; Horng, J.-C.; Hwu, J. R. Angew. Chem. Int. Ed. 2015, 54, 99269930.
    (78) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 35503577 and reference there in.
    (79) Ghan, L.; Just, G. Tetrahedron. 1990, 46, 151162.
    (80) Pitsch, S.; Spinner, C.; Atsum, K.; Ermert, P. Chimia 1999, 53, 291294.
    (81) Hwu, J. R.; Lin, Y. S.; Josephrajan, J; Hsu, M.-H.; Cheng, F.-Y.;Yeh, C,-S.; Su, W,-C.; Shieh, D.-B. J. Am. Chem. Soc. 2009, 131, 6668.

    (82) Hakimelahi, G. H.; MoosaviMovahedi, A. A.; Sadeghi, M. M.; Tsay, S.-C.; Hwu, J. R. J. Med. Chem. 1995, 38, 46484659.
    (83) Razzel, W. E.; Khorana, H. G. idbi, 1961, 236, 1144.
    (84) Fettiplace, M, R.; Lis, K.; Ripper, R.; Kowal, K.; Pichurko, A.; Vitello, D.; Rubinstein, I.; Schwartz, D.; Akpa, B. S.; Weinberg, W. J. Control. Release 2015, 198, 6270.
    (85) Shigematsu, M.; Kawamura, T.; Kirino, Y. Front. Genet. 2018, 9, 562.
    (86) Shamis, M.; Lode, H, N,; Shabat, D. J. Am. Chem. Soc. 2004, 126, 17261731.
    (87) Freimoser, F. M.; Jakob, C. A.; Aebi, M.; Tour, U. Appl. Environ. Microbiol. 1999, 65, 37273729.
    (88) Gad, S. C.; Conroy, W. J.; McKelvey, J. A.; Turney, K. A. Drug Chem. Toxicol. 1978, 1, 339353.
    (89) Husinec, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16, 20472061.
    (90) Hashimoto T.; Maruoka, K. Chem. Rev. 2015, 115, 53665412.
    (91) Nájera, C.; Sansano, J. M. Angew. Chem. Int. Ed. 2005, 44, 62726276.
    (92) Yu, S.-B.; Hua, X.-P.; Deng, J.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. Tetrahedron: Asymmetry 2009, 16, 621625.
    (93) Hong, L.; Sun, W.; Yang, D.; Li G.; Wang, R. Chem. Rev. 2016, 116, 40064123.
    (94) Bohen, J. M.; Joullié, M. M.; Kaplan, F. A.; Love, B. J. Chem. Educ. 1973, 50, 367368.
    (95) Peterson, E. A.; Dillon, B.; Raheem, I.; Richardson, P.; Richter, D.; Schmidte, R.; Sneddonf, H. F. Green Chem. 2014, 16, 40604075.
    (96) Li, C.-J.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1319713202.
    (97) Sheldon, R. A. Pure Appl. Chem. 2009, 72, 12331246.
    (98) Hong, Y. J.; Tantillo, D. J. J. Am. Chem. Soc. 2015, 137, 41344140.
    (99) Wang, Y.; Cai, P.-J.; Yu, Z.-X. J. Org. Chem. 2017, 82, 46044612.
    (100) Ross, S. P.; Hoye, T. R. Nat. Chem. 2017, 9, 523530.
    (101) Zhang, J.; Chen, Z.-X.; Du, T.; Li, B.; Gu, Y.; Tian, S.-K. Org. Lett. 2016, 18, 48724875.
    (102) Xu, H.-D.; Cai, M.-Q.; He, W.-J.; Hu, W.-H.; Shen, M.-H. RSC Adv. 2014, 4, 76237626.
    (103) Chen, J.; Palani, V.; Hoye. T. R. J. Am. Chem. Soc. 2016, 138, 43184321.
    (104) GarcíaLópez, J.-A.; Greaney, M. F. Chem. Soc. Rev. 2016, 45, 67666798.
    (105) Jayanth, T. T.; Cheng, C.-H. Chem. Commun. 2006, 894–896.
    (106) Peng, X.; Ma, C.; Tung, C.-H.; Xu, Z. Org. Lett. 2016, 18, 4154−4157.
    (107) Yao, T.; He, D. Org. Lett. 2017, 19, 842−845.
    (108) Yang, W.-L.; Tang, F.-F.; He, F.-S.; Li, C.-Y.; Yu, X.; Deng, W.-P. Org. Lett. 2015, 17, 48224825.
    (109) Cayuelas, A.; Ortiz, R.; Nájera, C.; Sansano, J. M.; Larrañaga, O.; de Cózar, A.; Cossío, F. P. Org. Lett. 2016, 18, 29262929.
    (110) Wang, H.; Deng, Q.; Zhou, Z.; Hu, S.; Liu, Z.; Zhou, L.-Y. Org. Lett. 2016, 18, 404407.
    (111) Poulsen, P. H.; Vergura, S.; Monleón, A.; Jørgensen, D. K. B.; Jørgensen, K. A. J. Am. Chem. Soc. 2016, 138, 64126415.
    (112) Zhang, Z.; Sun, W.; Zhu, G.; Yang, J.; Zhang, M.; Hong, L.; Wang, R. Chem. Commun. 2016, 52, 13771380.
    (113) Arpa, E. M.; González–Esguevillas, M.; Pascual-Escudero, A.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2016, 81, 61286135.
    (114) Shi, F.; Luo, S.-W.; Tao, Z.-L.; He, L.; Yu, J.; Tu, S.-J.; Gong, L.-Z. Org. Lett. 2011, 13, 46804683.
    (115) Shi, F.; Xing, G.-J.; Tan, W.; Zhu, R.-Y.; Tu, S. Org. Biomol. Chem. 2013, 11, 14821489.
    (116) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev., 2014, 114, 90479153.
    (117) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 9991010.
    (118) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 1639416395.
    (119) Bohen, J. M.; Joullié, M. M.; Kaplan, F. A.; Love, B. J. Chem. Educ. 1973, 50, 367368.
    (120) For compounds 30a, 30b, and 30c, see: Kumar, S.; Painter, T. O.; Pal, B. K.; Neuenswander, B.; Malinakova, H. C. ACS Comb. Sci. 2011, 13, 466477.
    (121) Xu, J.-K.; Li, S.-J.; Wang, H.-Y.; Xu, W.-C. Tian, S.-K. Chem. Comm. 2017, 53, 17081711.
    (122) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 53405341.

    QR CODE