研究生: |
亞維傑 Avijit, Panja |
---|---|
論文名稱: |
新型「抗癌複合藥物」之研發暨具光學活性 「3-吡咯啉」合成法之開創 Development of New Anticancer Codrugs and a Method for Synthesis of Optically Active 3-Pyrrolines |
指導教授: |
胡紀如
Hwu, Jih-Ru |
口試委員: |
陳貴通
Tan, Kui-Thong 蔡福源 Cai, FuYuan 謝發坤 Shieh, Fa-Kuen 許銘華 Hsu, Ming-Hua 蔡淑貞 Tsay, Shwu-Chen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 193 |
中文關鍵詞: | 藥物傳遞 、藥物傳遞 、抗癌 、不對稱合成 、協同作用 、拮抗作用 |
外文關鍵詞: | Drug delivery, Drug delivery, Anticancer, Asymmetric synthesis, Synergism, Antagonism |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來新穎藥物設計方法之開發,已成為全球最受關注,極具潛力之研究標的,人們開始研究如何利用各種高效率之合成法,以及不同藥物傳遞方式設計並製造高療效藥物。我們利用骨牌式反應及精準藥物傳遞設計高療效之抗癌複合藥物。骨牌式反應因其高產率且環保,一直為有機合成化學中之重要研究領域。藥物傳遞方式之研究探討將具生物活性之化合物準確送至人體患部,以提高藥效。
我們所設計之新型抗癌複合藥物,包含四項關鍵部份:紫杉醇(抗癌藥物),來那度胺(具協同作用之免疫調節藥物),D-呋喃核糖(對人體無害之化學橋接基團),磷酸二酯部分則具有可控釋藥功能。此複合藥物之合成共7個步驟,總產率為33%。其對OECM1細胞之效力為8.82-9.93nM,對正常細胞的毒性為685.5->1000nM。其中磷酸二酯部分促進該藥物於正常細胞下抑制癌細胞之選擇性。複合藥物中來那度胺與紫杉醇之比例為1:1。與單一藥物相比,複合藥物之水溶性較好。複合藥物之協同作用從0.721-0.867顯著改善至0.336-0.395,拮抗作用適中(1.038-1.277)。此新型複合藥物之生物活性與單一藥物時相比提升近一百倍。
不對稱合成是現代有機化學中之重要反應,骨牌式反應可提高效率,降低毒性,且過程環保。對合成化學家而言,分離出特定異構物仍然是一項艱鉅任務。因此,我們開發了一種新型骨牌式反應,於單一燒瓶中完成四個連續步驟,其利用(三甲基甲矽烷基)芳基三氟甲磺酸酯,席夫鹼和炔烴,成功合成出具有生物活性之3-吡咯啉。該等新反應產率極佳(75-87%),且生成單一異構產物,具高立體選擇性。該反應利用1,4-分子內質子轉移和Hüisgen 1,3-偶極環加成反應,及不對稱反應催化劑(R)-()-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate,得到高光學純度之鏡像異構產物,鏡像異構比例高達98.5:1.5。
本篇論文探討了兩大重要主題,首先為新型複合藥物之設計與合成及其協同與拮抗作用之新發現。此外,我們利用「芐誘導反應」,成功研發出具光學活性「3-吡咯啉」之新合成方法。以上所述之豐富研究成果,可幫助學者專家們擬定藥物設計策略,並利用所發展之新合成法高效率研發及製造具生物活性化合物以對抗新興RNA病毒疾病。
Novel design of highly efficient drugs for the treatment of various diseases poses a significant challenge and a high-priority task in medicinal chemistry. Therefore, the synthesis of biologically active compounds by use of various methods and modifications for the known medications are closely related to each other. Drug delivery and domino reactions both have their significant importance for medicinal and synthetic organic chemistry. Drug delivery refers to the transport of a biologically active compound to the target site in the body and have its desired therapeutic effect.
Although the physical combination is efficient, only few codrugs possess anticancer activity without synergistic and antagonistic effects. We designed a novel anticancer codrug that contains four crucial elements: paclitaxel (a potent anticancer drug), lenalidomide (a immunomodulatory drug exerting synergistic effect), D-ribofuranose (a pharmacologically safe joint), and phosphodiester moiety as the trigger for the selective delivery. The synthesis of codrug involves seven steps in 33% overall yield. Its potency against OECM1 cells was found 8.82–9.93 nM and toxicity toward normal cells was 685.5 – >1000 nM. The phosphodiester moiety therein facilitates this drug to exhibit appealing selectivity against cancer cells in the presence of normal cells. Water solubility of codrug increased compared with the individual drugs. The synergism of codrug is significantly improved from 0.721–0.867 to 0.336–0.395 in comparison with the physical combination of lenalidomide with paclitaxel in a 1:1 ratio. The breakthrough in biological activity is that the antagonism is moderate (1.038–1.277) for the physical combination. It is raised greatly in two-order higher (40.01–130.9).
Enantioselective synthesis is a key process in modern organic chemistry. In the past decade, asymmetric catalysis has grown rapidly to become one of the most fascinating and current fields in organic chemistry. Increased efficiency, reduced toxicity and eco-friendly process are some of the striking features of domino reaction. Isolation of a particular isomer still remains a difficult task for the synthetic chemists. Therefore, we developed a domino reaction for the synthesis of 3-pyrrolines, a class of compounds with biological activities, directly from (trimethylsilyl)aryl triflates, Schiff bases, and alkynes by an eco-friendly method. The key features of this new reaction include the generation of a single product in very good yields (7587%) with high stereo- and enantio-selectivity. The reaction involves completion of four sequential steps in a single flask, which are formation of arynes, their alkylation by Schiff bases, an unusual 1,4-intramolecular proton transfer, and a Hüisgen 1,3-dipolar cycloaddition. The addition of the chiral catalyst (R)-()-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate to some of the reaction mixtures leads to the formation of optically active 3-pyrrolines with enantiomeric ratio as high as 98.5:1.5.
Two major challenges are discussed and addressed in this dissertation. These includes the design and syntheses of novel codrugs and new findings of synergism and antagonism effects of the new drug conjugates. On the other hand, development of a method for the synthesis of optically active 3-pyrrolines by benzyne-induced reactions. These results and compounds provide a way for further optimization, design, and synthesis of new biologically active compounds for the emerging RNA viral diseases.
(1) Tallarida, R. J. Genes Cancer. 2011, 3, 10031008.
(2) Foucquier, J.; Guedj, M. Pharma. Res. Per. 2015, 3, e00149.
(3) Chou, T.-C. Pharmacol Rev. 2006, 58, 621681.
(4) Bigioni, M.; Benzo, A.; Irrissuto, C.; Lopez, G.; Curatella, B.; Maggi, C. A. Cancer Chemother. Pharmacol. 2008, 62, 6219.
(5) Lenz, T. L.; Hilleman, D. E.; Ann. Pharmacother. 2000, 34, 12831290.
(6) Breeze, S. Expert Rev Clin. Pharmacol. 2012, 5, 613615.
(7) Liu, Y.; Hu, B.; Fu, C.; Chen, X. Bioinformatics. 2010, 26, 587588.
(8) Albers, G. W.; Amarenco, P. Stroke. 2001, 32, 29482949.
(9) Bezin, J.; Pariente, A.; Lassalle, R.; Dureau-Pournin, C.; Abouelfath, A.; Robinson, P. Eur. J. Clin. Pharmacol. 2014, 70, 429436.
(10) Singh, S.; Bouzinbi, N.; Chaturvedi, V.; Godreuil, S.; Kremer, L. Clin. Microbiol. Infect. 2014, 20, 11241127.
(11) Lee, H. Z.; Miller, B.W.; Kwitkowski, V. E.; Ricci, S.; DelValle, P.; Saber, H. Clin. Cancer Res. 2014, 20, 39023907.
(12) Patankar, N. A.; Pritchard, J.; van Grinsven, M.; Osooly, M.; Bally, M. B. Clin. Cancer Res. 2013, 19, 865877.
(13) Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. J. Med. Chem. 2008, 51, 347372.
(14) Bhosle, D.; Bharambe, S.; Gairola, N.; Dhaneshwar, S. S. Indian J. Pharm. Sci. 2006, 68, 286294.
(15) Baltzer, B.; Binderup, E.; Daehne, W. V.; Godtfredsen, W. O.; Kansen. K.; Nielsen, B.;
Sorensen. H.; Vangedal, S. J. Antibiot. 1980, 33, 11831192.
(16) Jones, R. N. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 4358.
(17) Svartz, N. Acta. Med. Scand. 1942, 110, 577598.
(18) Croft, D. N.; Cuddigan, J. H.; Sweetland, C. Br. Med. J. 1972, 3, 545547.
(19) Adnan, S.; Paterson, D. L.; Lipman, J.; Roberts, J. A. Int. J. Antimicrob. Ag. 2013, 42, 384389.
(20) Katselou, M.; Papoutsis, I.; Nikolaou, P.; Qammaz, S.; Spiliopoulou, C.; Athanaselis, S. Basic Clin. Pharmacol. Toxicol. 2016, 119, 133140.
(21) Gottesman, M. M. Annu. Rev. Med. 2002, 53, 615627.
(22) Foo, J.; Michor, F. PLoS Comput. Biol. 2009, 5, e1000557.
(23) Das, N.; Dhanawat, M.; Dash, B.; Nagarwal, R. C.; Shrivastava, S. K. Eur. J. Pharm. Sci. 2010, 41, 571588.
(24) Syed, Y. Y. Drugs. 2017, 13, 14731480.
(25) Mathew, P.; Tannir, N.; Tu, S. M.; Carter, C. M.; Bekele, N. B.; Pagliaro, L. Cancer Chemother. Pharmacol. 2010, 65, 811815.
(26) Dimopoulos, M.; Spencer, A.; Attal, M. N. Engl. J. Med. 2007, 357, 21232132.
(27) Richardson, P. G.; Weller, E.; Lonial, S.; Jakubowiak, A. J.; Jagannath, S.; Raje, N. S.; Avigan, D. E.; Xie, W.; Ghobrial, I. M.; Schlossman, R. L.; Mazumder, A.; Munshi, N. C.; Vesole, D. H.; Joyce, R.; Kaufman, J. L.; Doss, D.; Warren, D. L.; Lunde, L. E.; Kaster, S.; DeLaney, C.; Hideshima, T.; Mitsiades, C. S.; Knight, R.; Esseltine, D.-L.; Anderson, K.C. Blood. 2010, 116, 679686.
(28) Amraoui, K.; Belhadj, K.; Maître, B.; Jannière-Nartey, C.; Dupuis, J. Eur. Respir. J. 2013, 22, 9395.
(29) Richardson, P. G.; Mitsiades, C.; Hideshima, T.; Anderson, K. C. Exp. Rev. Anticancer Ther. 2006, 6, 11651173..
(30) Walz, S.; Weis, S.; Franz. M.; Rominger, F.; Trapp, O. Electrophoresis. 2015, 36, 796804.
(31) Szabó, Z.-I.; Foroughbakhshfasaei, M.; Gál, R.; Horváth, P.; Komjáti, B.; Noszál, B.; Tóth, G. J. Sep. Sci. 2018, 41, 1414-1423.
(32) Jacquesa, V.; Czarnika, A. W.; Judgeb, T. M.; Van der Ploega, L. H. T.; DeWitta, D. R. Proc. Natl. Acad. Sci. U S A. 2015, 112, e14711479.
(33) Wei, Y.; Pu, X.; and Zhao, L. Oncol. Rep. 2017, 37, 31593166.
(34) Meng, Z.; Lv, Q.; Lu, J.; Yao, H.; Lv, X.; Jiang, F.; Lu, A.; Zhang, G. Int. J. Mol. Sci. 2016, 17, 796.
(35) Marupudi, N. I.; Han, J. E.; Li, K. W.; Renard, V. M.; Tyler, B. M.; Brem, H. Expert Opin. Drug Saf. 2007, 6, 609621.
(36) Dugas, H.; Penney, C. In Bioorganic Chemistry, A Chemical Approach to Enzyme Action; Cantor, C. R., Eds.; SpringerVerlag: Berlin, 1981; p 36.
(37) Tietze, L. F. Chem. Rev. 1996, 96, 115136.
(38) Padwa, A. Chem. Soc. Rev. 2009, 38, 30723081.
(39) Ardkhean, R.; Caputo, D. F. J.; Morrow, S. M.; Shi, H.; Xiong, Y.; Anderson, E. A. Chem. Soc. Rev. 2016, 45, 15571569.
(40) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237294.
(41) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 15701581.
(42) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167178.
(43) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993–3009.
(44) Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 5180.
(45) Halpern, J.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5347.
(46) Green, M. P.; Prodger, J. C.; Hayes, C. J. Tetrahedron Lett. 2002, 43, 66096611.
(47) Chogii, I.; Njardarson, J. T. Angew. Chem. Int. Ed. 2015, 54, 1370613710.
(48) Di Bussolo, V.; Frau, I.; Crotti, S.; Uccello-Barretta, G.; Balzano, F.; Pineschi, M.; Crotti, P. Org. Lett. 2013, 15, 60266029.
(49) Shi, F.; Xing, G.-J.; Tan, W.; Zhu, R.-Y.; Tu, S. Org. Biomol. Chem. 2013, 11, 14821489.
(50) Wang, Y.-X.; Mabic, S.; Castagnoli Jr, N. Bioorg. Med. Chem. 1998, 6, 143149.
(51) Lange, U. E. W.; Baucke, D.; Hornberger, W.; Mack, H.; Seitz, W.; Höffken, H. W. Bioorg. Med. Chem. Lett. 2006, 16, 26482653.
(52) Lee, Y.; Ling, K.-Q.; Lu, X.; Silverman, R. B.; Shepard, E. M.; Dooley, D. M.; Sayre, L. M. J. Am. Chem. Soc. 2002, 124, 1213512143.
(53) Mou, Q.-Y.; Chen, J.; Zhu, Y.-C.; Zhou, D.-H.; Chi, Z.-Q.; Long, Y.-Q. Bioorg. Med. Chem. Lett. 2002, 12, 22872290.
(54) Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Coleman, P. J.; Garbaccio, R. M.; Fraley, M. E.; Zrada, M. M.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; Lobell, R. B.; Tao, W.; Abrams, M. T.; South, V. J.; Huber, H. E.; Kohl, N. E.; Hartman, G. D. Bioorg. Med. Chem. Lett. 2007, 17, 26972702.
(55) Brichacek, M.; Njardarson, J. T. Org. Biomol. Chem. 2009, 7, 17611770.
(56) Kagoshima, H.; Akiyama, T. J. Am. Chem. Soc. 2000, 122, 1174111742.
(57) Sai, M.; Matsubara, S. Org. Lett. 2011, 13, 46764679.
(58) Zhu, X.-F.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 62766282.
(59) Li, G.-Y.; Chen, J.; Yu, W.-Y.; Hong, W.; Che, C.-M. Org. Lett. 2003, 5, 21532156.
(60) Zhang, D.-H.; Yao, L.-F.; Wei, Y.; Shi, M. Angew. Chem. Int. Ed. 2011, 50, 25832587.
(61) Ma, L.; Li, W.; Xi, H.; Bai, X.; Ma, E.; Yan, X.; Li, Z. Angew. Chem. Int. Ed. 2016, 55, 1041010413.
(62) Boeda, F., Clavier, H.; Jordaan, M.; Meyer, W. H.; Nolan, S. P. J. Org. Chem. 2008, 73, 259263.
(63) Wu, C.; Zhou, J. J. Am. Chem. Soc. 2014, 136, 650652.
(64) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 31403152.
(65) E. Yoshikawa, K. V. Radhakrishnan and Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 72807286.
(66) Du, C.-J. F.; Hart, H.; Ng, K.-K. D. J. Org. Chem. 1986, 51, 31623165.
(67) Dubrovskiy, A. V.; Markina N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191218.
(68) Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am. Chem. Soc. 2006, 128, 74267427.
(69) Yoshioka, E.; Kohtani, S.; Miyabe, H. Molecules 2014, 19, 863880.
(70) Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am. Chem. Soc. 2015, 137, 56705673.
(71) Castillo, J.-C.; Quiroga, J.; Abonia, R.; Rodriguez, J.; Coquerel, Y. Org. Lett. 2015, 17, 33743377.
(72) Qiu, D.; He, J.; Yue, X.; Shi, J.; Li, Y. Org. Lett. 2016, 18, 31303133.
(73) Hwu, J. R.; Hsu, Y. C. Chem. Eur. J. 2011, 17, 47274731.
(74) Hwu, J. R.; Chandrasekhar, D. B.; Hwang, K. C.; Lin, C.-C.; Horng, J.-C.; Shieh, F.-K. ChemistryOpen 2017, 6, 331335.
(75) Hsu, Y. C.; Hwu, J. R. Chem. Eur. J. 2012, 18, 76867690.
(76) Hwu, J. R.; Swain, S. P. Chem. Eur. J. 2013, 19, 65566560.
(77) Swain, S. P.; Shih, Y.-C.; Tsay, S.-C.; Jacob, J.; Lin, C.-C.; Hwang, K. C.; Horng, J.-C.; Hwu, J. R. Angew. Chem. Int. Ed. 2015, 54, 99269930.
(78) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 35503577 and reference there in.
(79) Ghan, L.; Just, G. Tetrahedron. 1990, 46, 151162.
(80) Pitsch, S.; Spinner, C.; Atsum, K.; Ermert, P. Chimia 1999, 53, 291294.
(81) Hwu, J. R.; Lin, Y. S.; Josephrajan, J; Hsu, M.-H.; Cheng, F.-Y.;Yeh, C,-S.; Su, W,-C.; Shieh, D.-B. J. Am. Chem. Soc. 2009, 131, 6668.
(82) Hakimelahi, G. H.; MoosaviMovahedi, A. A.; Sadeghi, M. M.; Tsay, S.-C.; Hwu, J. R. J. Med. Chem. 1995, 38, 46484659.
(83) Razzel, W. E.; Khorana, H. G. idbi, 1961, 236, 1144.
(84) Fettiplace, M, R.; Lis, K.; Ripper, R.; Kowal, K.; Pichurko, A.; Vitello, D.; Rubinstein, I.; Schwartz, D.; Akpa, B. S.; Weinberg, W. J. Control. Release 2015, 198, 6270.
(85) Shigematsu, M.; Kawamura, T.; Kirino, Y. Front. Genet. 2018, 9, 562.
(86) Shamis, M.; Lode, H, N,; Shabat, D. J. Am. Chem. Soc. 2004, 126, 17261731.
(87) Freimoser, F. M.; Jakob, C. A.; Aebi, M.; Tour, U. Appl. Environ. Microbiol. 1999, 65, 37273729.
(88) Gad, S. C.; Conroy, W. J.; McKelvey, J. A.; Turney, K. A. Drug Chem. Toxicol. 1978, 1, 339353.
(89) Husinec, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16, 20472061.
(90) Hashimoto T.; Maruoka, K. Chem. Rev. 2015, 115, 53665412.
(91) Nájera, C.; Sansano, J. M. Angew. Chem. Int. Ed. 2005, 44, 62726276.
(92) Yu, S.-B.; Hua, X.-P.; Deng, J.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. Tetrahedron: Asymmetry 2009, 16, 621625.
(93) Hong, L.; Sun, W.; Yang, D.; Li G.; Wang, R. Chem. Rev. 2016, 116, 40064123.
(94) Bohen, J. M.; Joullié, M. M.; Kaplan, F. A.; Love, B. J. Chem. Educ. 1973, 50, 367368.
(95) Peterson, E. A.; Dillon, B.; Raheem, I.; Richardson, P.; Richter, D.; Schmidte, R.; Sneddonf, H. F. Green Chem. 2014, 16, 40604075.
(96) Li, C.-J.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1319713202.
(97) Sheldon, R. A. Pure Appl. Chem. 2009, 72, 12331246.
(98) Hong, Y. J.; Tantillo, D. J. J. Am. Chem. Soc. 2015, 137, 41344140.
(99) Wang, Y.; Cai, P.-J.; Yu, Z.-X. J. Org. Chem. 2017, 82, 46044612.
(100) Ross, S. P.; Hoye, T. R. Nat. Chem. 2017, 9, 523530.
(101) Zhang, J.; Chen, Z.-X.; Du, T.; Li, B.; Gu, Y.; Tian, S.-K. Org. Lett. 2016, 18, 48724875.
(102) Xu, H.-D.; Cai, M.-Q.; He, W.-J.; Hu, W.-H.; Shen, M.-H. RSC Adv. 2014, 4, 76237626.
(103) Chen, J.; Palani, V.; Hoye. T. R. J. Am. Chem. Soc. 2016, 138, 43184321.
(104) GarcíaLópez, J.-A.; Greaney, M. F. Chem. Soc. Rev. 2016, 45, 67666798.
(105) Jayanth, T. T.; Cheng, C.-H. Chem. Commun. 2006, 894–896.
(106) Peng, X.; Ma, C.; Tung, C.-H.; Xu, Z. Org. Lett. 2016, 18, 4154−4157.
(107) Yao, T.; He, D. Org. Lett. 2017, 19, 842−845.
(108) Yang, W.-L.; Tang, F.-F.; He, F.-S.; Li, C.-Y.; Yu, X.; Deng, W.-P. Org. Lett. 2015, 17, 48224825.
(109) Cayuelas, A.; Ortiz, R.; Nájera, C.; Sansano, J. M.; Larrañaga, O.; de Cózar, A.; Cossío, F. P. Org. Lett. 2016, 18, 29262929.
(110) Wang, H.; Deng, Q.; Zhou, Z.; Hu, S.; Liu, Z.; Zhou, L.-Y. Org. Lett. 2016, 18, 404407.
(111) Poulsen, P. H.; Vergura, S.; Monleón, A.; Jørgensen, D. K. B.; Jørgensen, K. A. J. Am. Chem. Soc. 2016, 138, 64126415.
(112) Zhang, Z.; Sun, W.; Zhu, G.; Yang, J.; Zhang, M.; Hong, L.; Wang, R. Chem. Commun. 2016, 52, 13771380.
(113) Arpa, E. M.; González–Esguevillas, M.; Pascual-Escudero, A.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2016, 81, 61286135.
(114) Shi, F.; Luo, S.-W.; Tao, Z.-L.; He, L.; Yu, J.; Tu, S.-J.; Gong, L.-Z. Org. Lett. 2011, 13, 46804683.
(115) Shi, F.; Xing, G.-J.; Tan, W.; Zhu, R.-Y.; Tu, S. Org. Biomol. Chem. 2013, 11, 14821489.
(116) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev., 2014, 114, 90479153.
(117) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 9991010.
(118) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 1639416395.
(119) Bohen, J. M.; Joullié, M. M.; Kaplan, F. A.; Love, B. J. Chem. Educ. 1973, 50, 367368.
(120) For compounds 30a, 30b, and 30c, see: Kumar, S.; Painter, T. O.; Pal, B. K.; Neuenswander, B.; Malinakova, H. C. ACS Comb. Sci. 2011, 13, 466477.
(121) Xu, J.-K.; Li, S.-J.; Wang, H.-Y.; Xu, W.-C. Tian, S.-K. Chem. Comm. 2017, 53, 17081711.
(122) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 53405341.