研究生: |
劉育辰 Liu, Yu-Chen |
---|---|
論文名稱: |
可連續操作光子晶體奈米雷射的製作與特性分析 Fabrication and Character ization of continuous-Wave Operated Photonic Crystal Nanolasers |
指導教授: |
吳孟奇
Wu, Meng-Chyi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 光子晶體 、半導體雷射 |
外文關鍵詞: | Photonic Crystals, Semiconductor Lasers |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
近年來,光子晶體共振腔是光電領域中熱門研究的課題之一,然而大部份的光子晶體共振腔都是以懸浮結構為主,原因在於懸浮結構在垂直方向上折射係數差異較大,可以有效的將光侷限住,但其相對的空氣的導熱係數較差,所以此種結構大部份只能在脈衝模式下操作;然而在未來光積體電路上,一個可連續操作的光源是必要的,且在現今元件越做越小的趨勢下,一個小而可連續操作的雷射是我們所渴望的目標,所以在本研究中,由於藍寶石基板相較於空氣而言有較好的導熱性,且其折射係數與空氣並不會相差太多,所以我們將會以藍寶石基板來取代空氣層作為散熱的基板,經由晶片直接接合的方式將InGaAsP 晶片接合在藍寶石基板上,並在接合好的晶片上製作出光子晶體奈米共振腔,且分析其特性。
Abstract
In recent years, photonic crystal cavity is one of the most popular studies in the optoelectronic fields. Most of the photonic crystal cavities are formed in the suspend membrane structure, owing to this type of laser cavity can have strong confinement for light on the vertical direction. However, most of this type of laser cavity can only operate under pulsed pumped condition, because of the poor heat dispassion of the air on the vertical direction. For future photonic integrated circuits, a small and continuous wave operated laser is the necessary element which is also our goal because of today the scale of the devices became smaller and smaller. Comparing the sapphire substrate with the air, the sapphire substrate has better thermal conductivity and the index is close to the air. So here the sapphire substrate is substituted for the air for heat dissipation. Through the direct wafer bonding method, the InGaAsP wafer is bonded with the sapphire substrate and then the photonic crystal nanocavity is fabricated on the sample. And then the photonic crystal nanolaser is characterized and analyzed.
References
[1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett.,58,2059 (1987)
[2] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices”, Phys. Rev. Lett.,58,2486 (1987)
[3] K. M. Ho et al. “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett.,65,3152 (1990)
[4] E. Yablonovitch et al. “Photonic band structure: The face-centered-cubic case employing nonspherical atoms” Phys. Rev. Lett.,67,2295 (1991)
[5] K. Kim et al. “Lattice Constant Effect of Photonic Crystals on the Light Output of Blue Light-Emitting Diodes” IEEE Photon. Technol. Lett.,20,1455 (2008)
[6] P. T. Lee et al. “Room-temperature Operation of VCSEL-Pumped Photonic Crystal Lasers” IEEE Photon. Technol. Lett.,14,435 (2002)
[7] Yoshihiro Akahane et al. “High-Q Photonic Nanocavity in a Two-Dimensional Photonic Crystal” Nature.,425,944 (2003)
[8] Atsushi Sugitatsu et al. “Line-defect-waveguide Laser Integrated with a Point Defect in a Two-Dimensional Photonic Crystal Slab”, Appl. Phys. Lett.,86,171106 (2005)
[9] http://www.lostseaopals.com.au/opals/index.asp
[10] L. P. Biro et al, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair”, Phys. Rev. E. 67, 021907, (2003)
[11] J. D. Joannopoulos et al. “Photonic Crystals”, Princeton University Press, (1995)
[12] P. R. Berman. New York: Academy (1994)
[13] O. Painter et al. “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science,284,1819 (1999)
[14] J. K. Hwang et al. “Room-Temperature Triangular-Lattice Two-Dimensional Photonic Band Gap Lasers Operating at 1.54 μm”, Appl. Phys. Lett.,76,2982 (2000)
[15] H. G. Parket et al.“Nondegenerate Monopole-mode Two-Dimensional Photonic Band Gap Laser” , Appl. Phys. Lett.,79,3032 (2001)
[16] O. Painter et al.,“Polarization properties of dipolelike defect modes in
photonic crystal nanocavities“, Opt. Lett., 27,339 (2002).
[17] J. K. Hwang et al. “Continuous Room-Temperature Operation of Optically Pumped Two-Dimensional Photonic Crystal Lasers at 1.6 μm” , IEEE Photon. Technol. Lett.12.1295 (2000)
[18] M. H. Shih et al. “Identification of Modes and Single Mode Operation of Sapphire-Bonded Photonic Crystal Lasers under Continuous-Wave Room Temperature Operation” , Appl. Phys. Lett.90.121116 (2007)
[19] 陳文彥,「砷化銦鎵量子點與二維光子晶體共振腔之耦合效應研究」,國立中央大學物理研究所,博士論文(2007)。
[20] A. V. Krishnamoorthy et al. “16 × 16 VCSEL Array Flip-Chip Bonded to CMOS VLSI Circuit”, IEEE Photon. Technol. Lett. 12.1073 (2000)
[21] P. T. Lee et al. “Operation of Photonic Crystal Membrane Lasers above Room Temperature”, Appl. Phys. Lett.81.3311 (2002)
[22] K. Nozaki et al. “Room Temperature Continuous Wave Operation and Controlled Spontaneous Emission in Ultrasmall Photonic Crystal Nanolaser”, Opt. Express.15.7506 (2007)
[23] Kengo Nozaki et al. “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers” Appl. Phys. Lett.88.211101 (2006)