簡易檢索 / 詳目顯示

研究生: 劉育辰
Liu, Yu-Chen
論文名稱: 可連續操作光子晶體奈米雷射的製作與特性分析
Fabrication and Character ization of continuous-Wave Operated Photonic Crystal Nanolasers
指導教授: 吳孟奇
Wu, Meng-Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 75
中文關鍵詞: 光子晶體半導體雷射
外文關鍵詞: Photonic Crystals, Semiconductor Lasers
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    近年來,光子晶體共振腔是光電領域中熱門研究的課題之一,然而大部份的光子晶體共振腔都是以懸浮結構為主,原因在於懸浮結構在垂直方向上折射係數差異較大,可以有效的將光侷限住,但其相對的空氣的導熱係數較差,所以此種結構大部份只能在脈衝模式下操作;然而在未來光積體電路上,一個可連續操作的光源是必要的,且在現今元件越做越小的趨勢下,一個小而可連續操作的雷射是我們所渴望的目標,所以在本研究中,由於藍寶石基板相較於空氣而言有較好的導熱性,且其折射係數與空氣並不會相差太多,所以我們將會以藍寶石基板來取代空氣層作為散熱的基板,經由晶片直接接合的方式將InGaAsP 晶片接合在藍寶石基板上,並在接合好的晶片上製作出光子晶體奈米共振腔,且分析其特性。


    Abstract

    In recent years, photonic crystal cavity is one of the most popular studies in the optoelectronic fields. Most of the photonic crystal cavities are formed in the suspend membrane structure, owing to this type of laser cavity can have strong confinement for light on the vertical direction. However, most of this type of laser cavity can only operate under pulsed pumped condition, because of the poor heat dispassion of the air on the vertical direction. For future photonic integrated circuits, a small and continuous wave operated laser is the necessary element which is also our goal because of today the scale of the devices became smaller and smaller. Comparing the sapphire substrate with the air, the sapphire substrate has better thermal conductivity and the index is close to the air. So here the sapphire substrate is substituted for the air for heat dissipation. Through the direct wafer bonding method, the InGaAsP wafer is bonded with the sapphire substrate and then the photonic crystal nanocavity is fabricated on the sample. And then the photonic crystal nanolaser is characterized and analyzed.

    Content Abstract (in Chinese) Abstract (in English) Acknowledgements List of Figures List of Tables Chapter 1 Introduction 1-1 Photonic Crystal 1-1-1 History and Development of the Photonic Crystal 1-1-2 Introduction of the Photonic Crystal 1-2 Two-Dimensional Photonic Crystal Defect Laser 1-3 Motivation and Overview of Thesis Chapter 2 Basic Theory 2-1 TE Wave and TM Wave 2-2 Plane Wave Expansion Method 2-3 Photonic Crystal Band Structure Chapter 3 Fabrication Procedure 3-1 Introduction 3-2 ICP-RIE Etching Recipes for InGaAsP Materials 3-3 Fabrication Steps for Sapphire-Bonded Photonic Crystal Lasers 3-3-1 Direct Wafer Bonding Process 3-3-2 Electron Beam Lithography Process 3-3-3 ICP-RIE Etching Process 3-4 Conclusion Chapter 4 Characterization of the Two-dimensional Sapphire-Bonded photonic Crystal Nanolasers 4-1 Measurement System 4-2 Characterization of D1 Photonic Crystal Nanolaser 4-2-1 Characterize the Mode of the D1 Cavity through the Simulation 4-2-2 Basic Lasing Characterization 4-2-3 Quality Factor of the Sapphire-Bonded D1 Photonic Crystal Nanocavity 4-2-4 Thermal Properties of the D1 Photonic Crystal Nanolasers 4-3 Characterization of Point-Shift Photonic Crystal Nanolaser 4-3-1 Characterize the Mode of the Point-Shift Cavity through the Simulation 4-3-2 Basic Lasing Characterization 4-3-3 Quality Factor of the Sapphire-Bonded Point-Shift Photonic Crystal Nanocavity 4-4 Conclusion Chapter 5 Conclusions and Outlook References. List of Figures Figu 1-1. Opal, photonic crystal of mineral. (P.2) Figu 1-2. Phosphor powder of the butterfly with photonic crystal structure. (P.3) Figu 1-3. The photonic crystal structures can be divided into one dimensional, two-dimensional and three dimensional structures. (P.3) Figu 1-4. The configuration of the two dimensional photonic crystal defect laser. (P.7) Figu 2-1. Diagram of the TE and TM mode. (P.11) Figu 2-2. TE and TM wave in the photonic crystal structure. (P.12) Figu 2-3. The TE band diagrams are calculated by two dimensional plane wave expansion methods (a) the triangular lattice (b) the square lattice. (P.17) Figu 2-4. The TE-like band diagrams are calculated by two dimensional plane wave expansion methods (a) suspend membrane structure (b) sapphire bonded structure. (P.19) Figu 3-1. The high density plasma ICP-RIE system is used for dry etching. (P.21) Figu 3-2. The etching morphology of the hole with different pressures ( a ) pressure 4 mtorr ( b ) pressure 8 mtorr ( c ) pressure 12 mtorr. (P.23) Figu 3-3. The etching analyses with different pressure (a) etching rate versus different pressure (b) selectivity versus different pressure. (P.25) Figu 3-4. The etching morphology of the hole with different gas ratio N2/Cl2 ( a ) N2/Cl2 = 1.2 ( b ) N2/Cl2 = 2 ( c ) N2/Cl2 = 3. (P.27) Figu 3-5. The etching analyses with different gas ratio (a) etching rate versus different gas ratio (b) selectivity versus different gas ratio. (P.29) Figu 3-6. The tilt 30 degree angle view SEM images of etching situation with the CH4/H2/Cl2 gases mixture recipe. (P.31) Figu 3-7. The epitaxial structure of InGaAsP QWs. (P.32) Figu 3-8. The whole fabrication process of the photonic crystal defect laser formed on the sapphire substrate. (P.33) Figu 3-9. The curve of annealing temperature with annealing time. (P.38) Figu 3-10. The picture of the sapphire-bonded InGaAsP after InP substrate is removed by the HCl solution. (P.39) Figu 3-11. (a) The configuration of the bonding fixture, two graphite plates and screws. (b) The annealing system is composed of pump, chamber and control panel. (P.40) Figu 3-12. The cross section SEM image of photonic crystal patterns after E-beam writing. (P.42) Figu 3-13. The nanometer scale photonic crystal patterns is obtained and defined through the SEM/E-beam system. (P.42) Figu 3-14. The SEM pictures of the SiNx etching. (P.43) Figu 3-15. The magnified images of the defect region from 30 degree angle view ( a ) the D1 cavity ( b ) the point-shift cavity. (P.45) Figu 4-1. The photography of the measurement system. (P.47) Figu 4-2. Comparing the PL spectrum of the pure InGaAsP QWs with the PL spectrum of the sapphire bonded InGaAsP QWs. (P.49) Figu 4-3. The top view SEM image of D1 sapphire bonded photonic crystal nanocavity. (P.50) Figu 4-4. (a) 3D PWE band structure diagram (b) 3D FDTD simulated curve. (P.51) Figu 4-5. The top view of Hz field profile of the high Q mode for the photonic crystal nanocavity calculated by the FDTD method. (P.52) Figu 4-6. The lasing spectrum of a D1 sapphire –bonded photonic crystal laser under room temperature CW pumped conditions. The lasing wavelength is 1587.6 nm and the side-mode suppression ratio reach more than 20 dB. (P.53) Figu 4-7. The light-in light-out curve (L-L curve) of the nanolaser cavity, and the threshold power is approximately 0.85 mW. The effective threshold power is only 35 μW. (P.54) Figu 4-8. The polarization curve of D1 defect photonic crystal nanolaser. (P.55) Figu 4-9. The lasing wavelength versus lattice constant of D1 photonic crystal nanolaser on the sapphire substrate. (P.56) Figu 4-10. The linewidth diagram of the D1 photonic crystal nanolaser. (P.58) Figu 4-11. The lasing wavelength shift versus the CW pumped power varying. The slop is approximately 0.14 nm/mW. (P.60) Figu 4-12. The top view SEM image of the sapphire bonded point-shift photonic crystal nanocavity. (P.61) Figu 4-13. (a) 3D PWE band structure diagram (b) 3D FDTD simulated curve. (P.62) Figu 4-14. The top view of Hz field profile of the high Q mode for the photonic crystal nanocavity calculated by the FDTD method. (P.63) Figu 4-15. The lasing spectrum of the point-shift sapphire–bonded photonic crystal laser under room temperature CW pumped conditions. The lasing wavelength is 1578.1 nm. (P.64) Figu 4-16. The light-in light-out curve (L-L curve) of the point-shift nanolaser cavity, and the threshold power is approximately 1.5 mW. The effective threshold power is only 40 μW. (P.65) Figu 4-17. The lasing wavelength versus lattice constant of point-shift photonic crystal nanolaser on the sapphire substrate. (P.66) Figu 4-18. The polarization curve of point-shift defect photonic crystal nanolaser. (P.67) Figu 4-19. The diagram of linewidth and Light in light out curve. (P.68) Figu 4-20. The linewidth diagram of the point shift 0.18a photonic crystal nanolaser. (P.69) List of Tables Table 3-1 The etching parameter with different pressure. (P.26) Table 3-2 The etching parameter with different gas ratio. (P.30) Table 3-3 The etching parameter with CH4/H2/Cl2 gases mixture. (P.34)

    References

    [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett.,58,2059 (1987)
    [2] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices”, Phys. Rev. Lett.,58,2486 (1987)
    [3] K. M. Ho et al. “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett.,65,3152 (1990)
    [4] E. Yablonovitch et al. “Photonic band structure: The face-centered-cubic case employing nonspherical atoms” Phys. Rev. Lett.,67,2295 (1991)
    [5] K. Kim et al. “Lattice Constant Effect of Photonic Crystals on the Light Output of Blue Light-Emitting Diodes” IEEE Photon. Technol. Lett.,20,1455 (2008)
    [6] P. T. Lee et al. “Room-temperature Operation of VCSEL-Pumped Photonic Crystal Lasers” IEEE Photon. Technol. Lett.,14,435 (2002)
    [7] Yoshihiro Akahane et al. “High-Q Photonic Nanocavity in a Two-Dimensional Photonic Crystal” Nature.,425,944 (2003)
    [8] Atsushi Sugitatsu et al. “Line-defect-waveguide Laser Integrated with a Point Defect in a Two-Dimensional Photonic Crystal Slab”, Appl. Phys. Lett.,86,171106 (2005)
    [9] http://www.lostseaopals.com.au/opals/index.asp
    [10] L. P. Biro et al, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair”, Phys. Rev. E. 67, 021907, (2003)
    [11] J. D. Joannopoulos et al. “Photonic Crystals”, Princeton University Press, (1995)
    [12] P. R. Berman. New York: Academy (1994)
    [13] O. Painter et al. “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science,284,1819 (1999)
    [14] J. K. Hwang et al. “Room-Temperature Triangular-Lattice Two-Dimensional Photonic Band Gap Lasers Operating at 1.54 μm”, Appl. Phys. Lett.,76,2982 (2000)
    [15] H. G. Parket et al.“Nondegenerate Monopole-mode Two-Dimensional Photonic Band Gap Laser” , Appl. Phys. Lett.,79,3032 (2001)
    [16] O. Painter et al.,“Polarization properties of dipolelike defect modes in
    photonic crystal nanocavities“, Opt. Lett., 27,339 (2002).
    [17] J. K. Hwang et al. “Continuous Room-Temperature Operation of Optically Pumped Two-Dimensional Photonic Crystal Lasers at 1.6 μm” , IEEE Photon. Technol. Lett.12.1295 (2000)
    [18] M. H. Shih et al. “Identification of Modes and Single Mode Operation of Sapphire-Bonded Photonic Crystal Lasers under Continuous-Wave Room Temperature Operation” , Appl. Phys. Lett.90.121116 (2007)
    [19] 陳文彥,「砷化銦鎵量子點與二維光子晶體共振腔之耦合效應研究」,國立中央大學物理研究所,博士論文(2007)。
    [20] A. V. Krishnamoorthy et al. “16 × 16 VCSEL Array Flip-Chip Bonded to CMOS VLSI Circuit”, IEEE Photon. Technol. Lett. 12.1073 (2000)
    [21] P. T. Lee et al. “Operation of Photonic Crystal Membrane Lasers above Room Temperature”, Appl. Phys. Lett.81.3311 (2002)
    [22] K. Nozaki et al. “Room Temperature Continuous Wave Operation and Controlled Spontaneous Emission in Ultrasmall Photonic Crystal Nanolaser”, Opt. Express.15.7506 (2007)
    [23] Kengo Nozaki et al. “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers” Appl. Phys. Lett.88.211101 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE