簡易檢索 / 詳目顯示

研究生: 林騰焱
Lin, Teng-Yen
論文名稱: 圖案化明膠甲基丙烯水凝膠對血管生成和皮膚再生的影響
Effects of patterned gelatin methacrylate hydrogels on vascular formation and skin regeneration
指導教授: 陳盈潔
Chen, Ying-Chieh
口試委員: 王子威
Wang, Tzu-Wei
黃琇珍
Huang, Hsiu-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 114
中文關鍵詞: 圖案化明膠甲基丙烯血管生成皮膚再生
外文關鍵詞: patterned, gelatin methacrylate, vascular formation, skin regeneration
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來組織工程的快速發展為再生組織或器官開創了許多可能性,而及時的在工程組織裡血管化是組織再生成功的重要關鍵,如何在短時間內產生厚的血管化組織,進而增進組織存活率與功能性發展,是目前組織工程最需要被解決的問題。隨著製造技術的進步,已有許多圖案化水凝膠策略在體外實驗取得重大的進展,然而多數研究缺乏體內實驗數據,使圖案化策略在體內的效用與機制依然並不明確。
    我們比較了生物3D列印與微影製程在圖案化明膠甲基丙烯(Gelatin methacrylate, GelMA)水凝膠中的優勢與限制,微影製程展現了顯著較佳的細胞活性與結構穩定性。透過對微影製程的改良,可以輕易製造出厚1 mm的可堆疊圖案化GelMA水凝膠,而透過曝光時間的調控,能夠在50 %、70 %和100 %覆蓋率水凝膠中建立相同的材料性質,且圖案化水凝膠顯示更快的降解速率與擴散效率。在體外培養中,圖案化水凝膠可以克服細胞培養的厚度限制、增進細胞的行為表現並擴大適合細胞生長的材料特性範圍。
    在體內動物實驗方面,以圖案化GelMA水凝膠結合人類間質幹細胞(Mesenchymal stem cell, MSC)和人臍靜脈內皮細胞(Human umbilical vein endothelial cell, HUVEC)共培養策略,使用裸鼠皮下植入模型證明若是給予適當的空間(70 %覆蓋率)且在體內保持3D結構(w/ spacer),圖案化結構可以有效增進細胞反應並引導血管生成,7天內在厚的水凝膠(2 mm)內部形成均勻的血管網路;在裸鼠全層皮膚傷口癒合模型中,也證實圖案化GelMA水凝膠可以增進傷口前期血管新生與肉芽形成能力,在一個月內高度回復皮膚功能化附屬物與機械性質,促進無疤痕皮膚再生。


    Rapid progress of tissue engineering in recent years has opened up tremendous possibilities for regenerating tissues. Timely vascularization into engineered tissue plays a critical role in the success of tissue regeneration, but how to rapidly construct thicker vascularized tissue, thereby improving tissue survivability and functional development, is the problem most needed to be solved in tissue engineering. With the advancement of manufacturing technology, numerous strategies of patterned hydrogels have made significant progress in vitro, whereas most studies lacked of in vivo animal experimental results. The effects and mechanisms of the patterning strategies in vivo remained unclear.
    We compared the advantages and limitations of 3D bioprinting and lithography process in forming patterned Gelatin methacrylate (GelMA) hydrogels. The lithography process demonstrated better cell viability and structural stability. Through the improvement of the lithography process, the stackable patterned GelMA hydrogel with 1 mm thickness can be easily fabricated. The same material properties could be established in 50 %, 70 % and 100 % coverage GelMA hydrogels by adjusting exposure times, and the patterned hydrogels showed faster degradation rate and diffusion efficiency compared to unpatterned 100 % coverage GelMA ones. In vitro cell culture, patterned GelMA hydrogels were able to overcome the thickness limitations in cell culture to enhance cell behavior and expand the range of suitable material properties for cell growth.
    In vivo animal experiments, the patterned GelMA hydrogels were combined with human mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture strategy. Using nude mice subcutaneous implantation model proved that if the appropriate space (70 % coverage) was given and the 3D structure (w/ spacer) was maintained in vivo, the patterned structure could enhance cellular response and guide angiogenesis to form a uniform vascular network in the thick hydrogel (2 mm) within 7 days. In the full-thickness skin wound healing model of nude mice, it was also confirmed that the patterned GelMA hydrogels were able to enhance the angiogenesis and granulation formation in the early stage of the wound healing, and high restoration of the skin functional appendages and mechanical properties were oberserved within 1 month to promote the scarless skin regeneration.

    圖目錄 vi 表目錄 x 誌謝 xi 摘要 xii Abstract xiii 壹、 緒論 1 貳、 文獻回顧 3 2.1 血管組織工程現況 3 2.1.1 組織工程臨床需求 3 2.1.2 血管組織工程的現況 4 2.2 血管網路形成的學術研究 5 2.2.1 血管網路形成機制 5 2.2.2 血管組織工程的機制與策略 6 2.2.3 血管組織工程的發展與瓶頸 10 2.3 明膠基水凝膠材料特性 11 2.3.1 水凝膠材料 11 2.3.2 明膠與明膠甲基丙烯結構與特性 12 2.4 圖案化水凝膠的方法與優缺點 15 2.4.1 微流道(Microfluidics) 16 2.4.2 生物3D列印(Bioprinting) 17 2.4.3 微影(lithography) 20 2.5 材料特性對細胞行為的影響 22 2.6 皮膚再生研究 23 2.6.1 傷口癒合機制 23 2.6.2 皮膚再生研究 24 2.7 研究動機 26 參、 材料和實驗方法 27 3.1 GelMA合成 27 3.2 紫外光汞燈光源與強度 27 3.3 GelMA的功能化程度測定 27 3.4 3D列印圖案化GelMA水凝膠製程 28 3.4.1 實心圖案化GelMA 28 3.4.2 中空圖案化GelMA 28 3.5 微影圖案化GelMA水凝膠製程 29 3.6 膠原蛋白成膠條件 30 3.7 圖案化的光罩設計 30 3.8 GelMA水凝膠的成膠特性 31 3.9 GelMA水凝膠的堆疊性 31 3.10 GelMA水凝膠的機械性質(AFM) 31 3.11 GelMA水凝膠的溶脹比 32 3.12 GelMA水凝膠的孔徑分析 33 3.13 GelMA水凝膠的擴散測試 33 3.14 GelMA水凝膠的體外降解 33 3.15 細胞來源與培養 34 3.16 光引發劑與紫外光毒性測試 35 3.17 GelMA水凝膠的3D細胞培養 36 3.17.1 MSC在不同GelMA水凝膠厚度中的伸展實驗 36 3.17.2 MSC與HUVEC在GelMA水凝膠中的共培養實驗。 36 3.18 細胞染色 37 3.19 動物模型 37 3.19.1 血管新生模型 37 3.19.2 皮膚再生模型 38 3.20 組織學分析 40 3.21 小鼠皮膚拉伸試驗 40 3.22 統計分析 41 肆、 結果 42 4.1 GelMA功能化程度測定 42 4.2 3D列印圖案化GelMA 42 4.3 GelMA微影圖案化成膠特性 46 4.4 圖案化GelMA水凝膠特性 48 4.5 細胞毒性與細胞行為表現 56 4.6 血管新生動物實驗 63 4.6.1 體內水凝膠體積 63 4.6.2 血管新生能力 64 4.7 皮膚再生動物實驗 69 4.7.1 傷口癒合速度 69 4.7.2 傷口癒合前期的肉芽厚度與血管新生 70 4.7.3 皮膚再生 71 伍、 討論 80 5.1 3D列印與微影製程圖案化GelMA水凝膠 80 5.2 圖案化GelMA水凝膠性質 81 5.3 圖案化GelMA水凝膠細胞反應 83 5.4 血管新生動物實驗 84 5.5 皮膚再生動物實驗 88 陸、 結論 92 柒、 附錄 94 捌、 參考資料 100

    1. Arthur, W.T., et al., Growth factors reverse the impaired sprouting of microvessels from aged mice. Microvascular research, 1998. 55(3): p. 260-270.
    2. Novosel, E.C., C. Kleinhans, and P.J. Kluger, Vascularization is the key challenge in tissue engineering. Advanced drug delivery reviews, 2011. 63(4-5): p. 300-311.
    3. Jaklenec, A., et al., Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Engineering Part B: Reviews, 2012. 18(3): p. 155-166.
    4. Sukmana, I., Microvascular guidance: a challenge to support the development of vascularised tissue engineering construct. The Scientific World Journal, 2012. 2012.
    5. Johnson, P.C., et al., Strategic directions in tissue engineering. Tissue engineering, 2007. 13(12): p. 2827-2837.
    6. Khademhosseini, A. and R. Langer, A decade of progress in tissue engineering. Nature protocols, 2016. 11(10): p. 1775.
    7. Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chemical reviews, 2001. 101(7): p. 1869-1880.
    8. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
    9. Sivashanmugam, A., et al., An overview of injectable polymeric hydrogels for tissue engineering. European Polymer Journal, 2015. 72: p. 543-565.
    10. Seliktar, D., Designing cell-compatible hydrogels for biomedical applications. Science, 2012. 336(6085): p. 1124-1128.
    11. Nicodemus, G.D. and S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering Part B: Reviews, 2008. 14(2): p. 149-165.
    12. Chen, Y.C., et al., Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Advanced functional materials, 2012. 22(10): p. 2027-2039.
    13. Baranski, J.D., et al., Geometric control of vascular networks to enhance engineered tissue integration and function. Proceedings of the National Academy of Sciences, 2013. 110(19): p. 7586-7591.
    14. Singh, S., B.M. Wu, and J.C. Dunn, Accelerating vascularization in polycaprolactone scaffolds by endothelial progenitor cells. Tissue Engineering Part A, 2011. 17(13-14): p. 1819-1830.
    15. Lin, R.-Z., et al., Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials, 2013. 34(28): p. 6785-6796.
    16. Zhu, W., et al., Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials, 2017. 124: p. 106-115.
    17. Zheng, Y., et al., In vitro microvessels for the study of angiogenesis and thrombosis. Proceedings of the national academy of sciences, 2012. 109(24): p. 9342-9347.
    18. Hsu, Y.-H., et al., A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab on a chip, 2013. 13(15): p. 2990-2998.
    19. Kolesky, D.B., et al., Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the national academy of sciences, 2016. 113(12): p. 3179-3184.
    20. Wu, W., A. DeConinck, and J.A. Lewis, Omnidirectional printing of 3D microvascular networks. Advanced materials, 2011. 23(24): p. H178-H183.
    21. Langer, R.V., JP (1993).“. Tissue engineering”. Science. 260(5110): p. 920-926.
    22. Griffith, L.G. and G. Naughton, Tissue engineering--current challenges and expanding opportunities. science, 2002. 295(5557): p. 1009-1014.
    23. Ozbolat, I.T. and Y. Yu, Bioprinting toward organ fabrication: challenges and future trends. IEEE Transactions on Biomedical Engineering, 2013. 60(3): p. 691-699.
    24. Grinyó, J.M., Why is organ transplantation clinically important? Cold Spring Harbor perspectives in medicine, 2013. 3(6): p. a014985.
    25. Salvadori, M. and E. Bertoni, What’s new in clinical solid organ transplantation by 2013. World journal of transplantation, 2014. 4(4): p. 243.
    26. Saidi, R. and S.H. Kenari, Challenges of organ shortage for transplantation: solutions and opportunities. International journal of organ transplantation medicine, 2014. 5(3): p. 87.
    27. Kim, J.J. and S.D. Marks, Long-term outcomes of children after solid organ transplantation. Clinics, 2014. 69: p. 28-38.
    28. Fuchs, J.R., B.A. Nasseri, and J.P. Vacanti, Tissue engineering: a 21st century solution to surgical reconstruction. The Annals of thoracic surgery, 2001. 72(2): p. 577-591.
    29. HRSA, Organ Donation Statistics. 2019.
    30. Atala, A., Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation research, 2004. 7(1): p. 15-31.
    31. Sipe, J.D., Tissue engineering and reparative medicine. Annals of the New York Academy of Sciences, 2002. 961(1): p. 1-9.
    32. Auger, F.A., L. Gibot, and D. Lacroix, The pivotal role of vascularization in tissue engineering. Annual review of biomedical engineering, 2013. 15: p. 177-200.
    33. Folkman, J. and M. Hochberg, Self-regulation of growth in three dimensions. Journal of Experimental Medicine, 1973. 138(4): p. 745-753.
    34. Tremblay, P.L., et al., Inosculation of tissue‐engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. American journal of transplantation, 2005. 5(5): p. 1002-1010.
    35. Young, D., K. Greulich, and H. Weier, Species-specific in situ hybridization with fluorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice. The Journal of burn care & rehabilitation, 1996. 17(4): p. 305-310.
    36. Snapyan, M., et al., Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. Journal of Neuroscience, 2009. 29(13): p. 4172-4188.
    37. Gibot, L., et al., A preexisting microvascular network benefits in vivo revascularization of a microvascularized tissue-engineered skin substitute. Tissue Engineering Part A, 2010. 16(10): p. 3199-3206.
    38. Balaji, S., et al., The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Advances in wound care, 2013. 2(6): p. 283-295.
    39. Brown, J., Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. The British journal of radiology, 2014. 87(1035): p. 20130686.
    40. Francis, M.E., S. Uriel, and E.M. Brey, Endothelial cell–matrix interactions in neovascularization. Tissue Engineering Part B: Reviews, 2008. 14(1): p. 19-32.
    41. Moon, J.J., et al., Micropatterning of poly (ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Engineering Part A, 2008. 15(3): p. 579-585.
    42. Patan, S., Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of neuro-oncology, 2000. 50(1-2): p. 1-15.
    43. Risau, W., Mechanisms of angiogenesis. nature, 1997. 386(6626): p. 671.
    44. Peak, C.W., et al., Microscale technologies for engineering complex tissue structures, in Microscale Technologies for Cell Engineering. 2016, Springer. p. 3-25.
    45. Laschke, M.W., et al., Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue engineering, 2006. 12(8): p. 2093-2104.
    46. Rouwkema, J., N.C. Rivron, and C.A. van Blitterswijk, Vascularization in tissue engineering. Trends in biotechnology, 2008. 26(8): p. 434-441.
    47. Laschke, M. and M. Menger, Vascularization in tissue engineering: angiogenesis versus inosculation. European Surgical Research, 2012. 48(2): p. 85-92.
    48. Patel, Z.S. and A.G. Mikos, Angiogenesis with biomaterial-based drug-and cell-delivery systems. Journal of Biomaterials Science, Polymer Edition, 2004. 15(6): p. 701-726.
    49. Asahara, T., et al., VEGF contributes to postnatal neovascularization by mobilizing bone marrow‐derived endothelial progenitor cells. The EMBO journal, 1999. 18(14): p. 3964-3972.
    50. Silva, E.A. and D.J. Mooney, Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials, 2010. 31(6): p. 1235-1241.
    51. Asahara, T., et al., Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circulation research, 1998. 83(3): p. 233-240.
    52. Salcedo, R., et al., Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1α. The American journal of pathology, 1999. 154(4): p. 1125-1135.
    53. Tabata, Y. and Y. Ikada, Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials, 1999. 20(22): p. 2169-2175.
    54. Presta, M., et al., Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine & growth factor reviews, 2005. 16(2): p. 159-178.
    55. Koblizek, T.I., et al., Angiopoietin-1 induces sprouting angiogenesis in vitro. Current Biology, 1998. 8(9): p. 529-532.
    56. Bergsten, E., et al., PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor. Nature cell biology, 2001. 3(5): p. 512.
    57. LaRochelle, W.J., et al., PDGF-D, a new protease-activated growth factor. Nature cell biology, 2001. 3(5): p. 517.
    58. Stiles, C.D., The molecular biology of platelet-derived growth factor. Cell, 1983. 33(3): p. 653-655.
    59. Griffith, L.G. and M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nature reviews Molecular cell biology, 2006. 7(3): p. 211.
    60. Santos, M.I., et al., Response of micro-and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials, 2007. 28(2): p. 240-248.
    61. Unger, R.E., E. Dohle, and C.J. Kirkpatrick, Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Advanced drug delivery reviews, 2015. 94: p. 116-125.
    62. Rouwkema, J., J.D. Boer, and C.A.V. Blitterswijk, Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue engineering, 2006. 12(9): p. 2685-2693.
    63. Levenberg, S., et al., Engineering vascularized skeletal muscle tissue. Nature biotechnology, 2005. 23(7): p. 879.
    64. Melero-Martin, J.M., et al., Engineering robust and functional vascular networks in vivo with human adult and cord blood–derived progenitor cells. Circulation research, 2008. 103(2): p. 194-202.
    65. Hughes, C.C., Endothelial–stromal interactions in angiogenesis. Current opinion in hematology, 2008. 15(3): p. 204-209.
    66. Berthod, F., et al., Extracellular matrix deposition by fibroblasts is necessary to promote capillary‐like tube formation in vitro. Journal of cellular physiology, 2006. 207(2): p. 491-498.
    67. Laschke, M.W. and M.D. Menger, Prevascularization in tissue engineering: current concepts and future directions. Biotechnology advances, 2016. 34(2): p. 112-121.
    68. Druecke, D., et al., Neovascularization of poly (ether ester) block‐copolymer scaffolds in vivo: Long‐term investigations using intravital fluorescent microscopy. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004. 68(1): p. 10-18.
    69. Ahearne, M., Introduction to cell–hydrogel mechanosensing. Interface focus, 2014. 4(2): p. 20130038.
    70. Fan, C. and D.-A. Wang, Macroporous hydrogel scaffolds for three-dimensional cell culture and tissue engineering. Tissue Engineering Part B: Reviews, 2017. 23(5): p. 451-461.
    71. Richardson, T.P., et al., Polymeric system for dual growth factor delivery. Nature biotechnology, 2001. 19(11): p. 1029.
    72. Jain, R.K., et al., Engineering vascularized tissue. Nature biotechnology, 2005. 23(7): p. 821.
    73. Zisch, A.H., M.P. Lutolf, and J.A. Hubbell, Biopolymeric delivery matrices for angiogenic growth factors. Cardiovascular pathology, 2003. 12(6): p. 295-310.
    74. Ehrbar, M., et al., Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. Journal of controlled release, 2005. 101(1-3): p. 93-109.
    75. Ehrbar, M., et al., Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circulation research, 2004. 94(8): p. 1124-1132.
    76. Helm, C.-L.E., et al., Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proceedings of the National Academy of Sciences, 2005. 102(44): p. 15779-15784.
    77. Kneser, U., et al., Tissue engineering of bone: the reconstructive surgeon's point of view. Journal of cellular and molecular medicine, 2006. 10(1): p. 7-19.
    78. Riemenschneider, S.B., et al., Inosculation and perfusion of pre-vascularized tissue patches containing aligned human microvessels after myocardial infarction. Biomaterials, 2016. 97: p. 51-61.
    79. Lin, R.-Z., et al., Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nature biomedical engineering, 2017. 1(6): p. 0081.
    80. Rouwkema, J. and A. Khademhosseini, Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends in biotechnology, 2016. 34(9): p. 733-745.
    81. Song, W., et al., Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nature communications, 2019. 10(1): p. 1-12.
    82. Van Vlierberghe, S., P. Dubruel, and E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011. 12(5): p. 1387-1408.
    83. Annabi, N., et al., 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced materials, 2014. 26(1): p. 85-124.
    84. Peppas, N.A., et al., Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials, 2006. 18(11): p. 1345-1360.
    85. Annabi, N., et al., Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B: Reviews, 2010. 16(4): p. 371-383.
    86. Li, Y., J. Rodrigues, and H. Tomas, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews, 2012. 41(6): p. 2193-2221.
    87. Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews, 2012. 64: p. 223-236.
    88. Lai, J.-Y. and Y.-T. Li, Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules, 2010. 11(5): p. 1387-1397.
    89. Gorgieva, S. and V. Kokol, Collagen-vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. Biomaterials applications for nanomedicine, 2011. 2: p. 17-52.
    90. Foox, M. and M. Zilberman, Drug delivery from gelatin-based systems. Expert opinion on drug delivery, 2015. 12(9): p. 1547-1563.
    91. Yeo, Y., et al., Photocrosslinkable hydrogel for myocyte cell culture and injection. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2007. 81(2): p. 312-322.
    92. Yang, F., et al., The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials, 2005. 26(30): p. 5991-5998.
    93. Ruoslahti, E., RGD and other recognition sequences for integrins. Annual review of cell and developmental biology, 1996. 12(1): p. 697-715.
    94. Benton, J.A., et al., Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Engineering Part A, 2009. 15(11): p. 3221-3230.
    95. Van den Steen, P.E., et al., Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical reviews in biochemistry and molecular biology, 2002. 37(6): p. 375-536.
    96. Xiao, W., et al., Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta biomaterialia, 2011. 7(6): p. 2384-2393.
    97. Xu, F., et al., Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials. ACS nano, 2012. 6(8): p. 6640-6649.
    98. Klouda, L., Thermoresponsive hydrogels in biomedical applications: A seven-year update. European Journal of Pharmaceutics and Biopharmaceutics, 2015. 97: p. 338-349.
    99. Chuang, C.-H., et al., Enzymatic regulation of functional vascular networks using gelatin hydrogels. Acta Biomaterialia, 2015. 19: p. 85-99.
    100. Bertoni, F., et al., Transglutaminase Reactivity with Gelatine: Perspective Applications in Tissue Engineering. Biotechnology Letters, 2006. 28(10): p. 697-702.
    101. Das, S., et al., Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomaterialia, 2015. 11: p. 233-246.
    102. Van Den Bulcke, A.I., et al., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000. 1(1): p. 31-38.
    103. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271.
    104. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544.
    105. Liu, Y. and M.B. Chan-Park, A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 2010. 31(6): p. 1158-1170.
    106. Khetan, S. and J.A. Burdick, Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter, 2011. 7(3): p. 830-838.
    107. Fairbanks, B.D., et al., Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials, 2009. 30(35): p. 6702-6707.
    108. Benton, J.A., B.D. Fairbanks, and K.S. Anseth, Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials, 2009. 30(34): p. 6593-6603.
    109. Williams, C.G., et al., Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 2005. 26(11): p. 1211-1218.
    110. Schuurman, W., et al., Gelatin‐methacrylamide hydrogels as potential biomaterials for fabrication of tissue‐engineered cartilage constructs. Macromolecular bioscience, 2013. 13(5): p. 551-561.
    111. Gauvin, R., et al., Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012. 33(15): p. 3824-3834.
    112. Nikkhah, M., et al., Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012. 33(35): p. 9009-9018.
    113. Pampaloni, F., E.G. Reynaud, and E.H. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nature reviews Molecular cell biology, 2007. 8(10): p. 839.
    114. Klotz, B.J., et al., Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends in biotechnology, 2016. 34(5): p. 394-407.
    115. Haase, K. and R.D. Kamm, Advances in on-chip vascularization. Regenerative medicine, 2017. 12(3): p. 285-302.
    116. Chung, B.G., et al., Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab on a Chip, 2012. 12(1): p. 45-59.
    117. Chrobak, K.M., D.R. Potter, and J. Tien, Formation of perfused, functional microvascular tubes in vitro. Microvascular research, 2006. 71(3): p. 185-196.
    118. Li, X., et al., In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+] i. PloS one, 2015. 10(5): p. e0126797.
    119. Jeon, J.S., et al., Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integrative Biology, 2014. 6(5): p. 555-563.
    120. Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773.
    121. Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. 1986, Google Patents.
    122. Khalil, S. and W. Sun, Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Materials Science and Engineering: C, 2007. 27(3): p. 469-478.
    123. Chang, C.C., et al., Direct‐write bioprinting three‐dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 98(1): p. 160-170.
    124. Visser, J., et al., Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 2013. 5(3): p. 035007.
    125. Duan, B., et al., 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of biomedical materials research Part A, 2013. 101(5): p. 1255-1264.
    126. Wang, Z., et al., Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS applied materials & interfaces, 2018. 10(32): p. 26859-26869.
    127. Liu, W., et al., Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks. Advanced healthcare materials, 2017. 6(12): p. 1601451.
    128. Wu, D., et al., 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials & Design, 2018. 160: p. 486-495.
    129. Luo, Y., et al., 3D bioprinting scaffold using alginate/polyvinyl alcohol bioinks. Materials Letters, 2017. 189: p. 295-298.
    130. Lee, H. and D.-W. Cho, One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab on a Chip, 2016. 16(14): p. 2618-2625.
    131. Ying, G.L., et al., Aqueous Two‐Phase Emulsion Bioink‐Enabled 3D Bioprinting of Porous Hydrogels. Advanced Materials, 2018. 30(50): p. 1805460.
    132. Zhang, Y.S., et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016. 110: p. 45-59.
    133. Jia, W., et al., Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 2016. 106: p. 58-68.
    134. Aubin, H., et al., Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 2010. 31(27): p. 6941-6951.
    135. Soman, P., et al., Digital microfabrication of user‐defined 3D microstructures in cell‐laden hydrogels. Biotechnology and bioengineering, 2013. 110(11): p. 3038-3047.
    136. Caliari, S.R. and J.A. Burdick, A practical guide to hydrogels for cell culture. Nature methods, 2016. 13(5): p. 405.
    137. Hahn, M.S., J.S. Miller, and J.L. West, Three‐dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Advanced Materials, 2006. 18(20): p. 2679-2684.
    138. Fan, C. and D.A. Wang, Effects of Permeability and Living Space on Cell Fate and Neo‐Tissue Development in Hydrogel‐Based Scaffolds: A Study With Cartilaginous Model. Macromolecular bioscience, 2015. 15(4): p. 535-545.
    139. Han, L.-H., et al., Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Biomaterials, 2013. 34(17): p. 4251-4258.
    140. He, P., J. Fu, and D.-A. Wang, Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform. Acta biomaterialia, 2016. 35: p. 87-97.
    141. Lau, T.T., L.W. Ho, and D.-A. Wang, Hepatogenesis of murine induced pluripotent stem cells in 3D micro-cavitary hydrogel system for liver regeneration. Biomaterials, 2013. 34(28): p. 6659-6669.
    142. Marklein, R.A. and J.A. Burdick, Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter, 2010. 6(1): p. 136-143.
    143. Tsang, V.L., et al., Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. The FASEB journal, 2007. 21(3): p. 790-801.
    144. Reinke, J. and H. Sorg, Wound repair and regeneration. European surgical research, 2012. 49(1): p. 35-43.
    145. Witte, M.B. and A. Barbul, General principles of wound healing. Surgical Clinics of North America, 1997. 77(3): p. 509-528.
    146. Gurtner, G.C., et al., Wound repair and regeneration. Nature, 2008. 453(7193): p. 314.
    147. Eming, S.A., T. Krieg, and J.M. Davidson, Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology, 2007. 127(3): p. 514-525.
    148. Gurtner, G.C. and G.R. Evans, Advances in head and neck reconstruction. Plastic and reconstructive surgery, 2000. 106(3): p. 672-682.
    149. Proksch, E., J.M. Brandner, and J.M. Jensen, The skin: an indispensable barrier. Experimental dermatology, 2008. 17(12): p. 1063-1072.
    150. Galeano, M., et al., Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury. Critical care medicine, 2003. 31(4): p. 1017-1025.
    151. Yildirimer, L., N.T. Thanh, and A.M. Seifalian, Skin regeneration scaffolds: a multimodal bottom-up approach. Trends in biotechnology, 2012. 30(12): p. 638-648.
    152. Guerra, A., J. Belinha, and R.N. Jorge, Modelling skin wound healing angiogenesis: A review. Journal of theoretical biology, 2018.
    153. Hilmi, A.B.M. and A.S. Halim, Vital roles of stem cells and biomaterials in skin tissue engineering. World journal of stem cells, 2015. 7(2): p. 428.
    154. Sun, G., et al., Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proceedings of the National Academy of Sciences, 2011. 108(52): p. 20976-20981.
    155. Rustad, K.C., et al., Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 2012. 33(1): p. 80-90.
    156. Ma, S., et al., Immunobiology of mesenchymal stem cells. Cell death and differentiation, 2014. 21(2): p. 216.
    157. Ramos, R., C.F. Guerrero-Juarez, and M.V. Plikus, Hair Follicle Signaling Networks: A Dermal Papilla–Centric Approach. Journal of Investigative Dermatology, 2013. 133(10): p. 2306-2308.
    158. Biernaskie, J., et al., SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell stem cell, 2009. 5(6): p. 610-623.
    159. Ennis, W.J., A. Sui, and A. Bartholomew, Stem cells and healing: impact on inflammation. Advances in wound care, 2013. 2(7): p. 369-378.
    160. Galiano, R.D., et al., Quantitative and reproducible murine model of excisional wound healing. Wound repair and regeneration, 2004. 12(4): p. 485-492.
    161. Wu, Y., et al., Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem cells, 2007. 25(10): p. 2648-2659.
    162. Yeum, C.E., et al., Quantification of MSCs involved in wound healing: use of SIS to transfer MSCs to wound site and quantification of MSCs involved in skin wound healing. Journal of Tissue Engineering and Regenerative Medicine, 2013. 7(4): p. 279-291.
    163. Rodriguez, J., et al., Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem cell research & therapy, 2015. 6(1): p. 241.
    164. Tsai, C.-Y., Effects of two-stage treatments on skin regeneration, in Material Science amd Engineering. 2019, NTHU.
    165. Li, X., et al., 3D culture of chondrocytes in gelatin hydrogels with different stiffness. Polymers, 2016. 8(8): p. 269.
    166. Tumbleston, J.R., et al., Continuous liquid interface production of 3D objects. Science, 2015. 347(6228): p. 1349-1352.
    167. Alsberg, E., et al., Regulating bone formation via controlled scaffold degradation. Journal of dental research, 2003. 82(11): p. 903-908.
    168. Kong, H.J., et al., Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules, 2004. 5(5): p. 1720-1727.
    169. Raeber, G., M. Lutolf, and J. Hubbell, Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophysical journal, 2005. 89(2): p. 1374-1388.
    170. Brandl, F., F. Sommer, and A. Goepferich, Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials, 2007. 28(2): p. 134-146.
    171. Oh, Y., et al., A polyethylene glycol-based hydrogel as macroporous scaffold for tumorsphere formation of glioblastoma multiforme. Journal of Industrial and Engineering Chemistry, 2016. 39: p. 10-15.
    172. Jing, Z., et al., Amino acids in the pore region of Kv1 potassium channels dictate cell-surface protein levels: a possible trafficking code in the Kv1 subfamily. Biochemical Journal, 2005. 388(1): p. 355-362.
    173. Occhetta, P., et al., Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication, 2013. 5(3): p. 035002.
    174. Wilkens, C.A., et al., Layer-by-layer approach for a uniformed fabrication of a cell patterned vessel-like construct. Biofabrication, 2016. 9(1): p. 015001.
    175. Bae, C.Y., et al., Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters. Lab on a Chip, 2014. 14(13): p. 2183-2190.
    176. Shin, S.R., et al., Cell‐laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Advanced materials, 2013. 25(44): p. 6385-6391.
    177. Szklanny, A.A., et al., High‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels. Advanced Functional Materials, 2019: p. 1901335.
    178. Occhetta, P., et al., VA‐086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3 D cell embedding. Journal of Biomedical Materials Research Part A, 2015. 103(6): p. 2109-2117.
    179. Jain, R.K., Molecular regulation of vessel maturation. Nature medicine, 2003. 9(6): p. 685.
    180. Billiet, T., et al., The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014. 35(1): p. 49-62.
    181. Yin, J., et al., 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS applied materials & interfaces, 2018. 10(8): p. 6849-6857.
    182. Ma, X., et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences, 2016. 113(8): p. 2206-2211.
    183. Wu, L. and J. Ding, Effects of porosity and pore size on in vitro degradation of three‐dimensional porous poly (D, L‐lactide‐co‐glycolide) scaffolds for tissue engineering. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2005. 75(4): p. 767-777.
    184. Kambe, Y., et al., Vascular induction and cell infiltration into peptide-modified bioactive silk fibroin hydrogels. Journal of Materials Chemistry B, 2017. 5(36): p. 7557-7571.
    185. McCoy, M.G., et al., Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation. Acta biomaterialia, 2016. 44: p. 200-208.
    186. Zhang, J., et al., Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of translational medicine, 2015. 13(1): p. 49.
    187. Clayton, Z.E., et al., Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Bioscience reports, 2018. 38(4).
    188. Chen, S., et al., Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Scientific reports, 2015. 5: p. 18104.
    189. Winter, G.D., Effect of air exposure and occlusion on experimental human skin wounds. Nature, 1963. 200(4904): p. 378-379.
    190. Winter, G.D., Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature, 1962. 193(4812): p. 293-294.
    191. Xu, R., et al., Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Scientific reports, 2016. 6: p. 24596.
    192. Lamke, L.-O., G. Nilsson, and H. Reithner, The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns, 1977. 3(3): p. 159-165.
    193. Coviello, T., et al., Polysaccharide hydrogels for modified release formulations. Journal of controlled release, 2007. 119(1): p. 5-24.

    QR CODE