簡易檢索 / 詳目顯示

研究生: 曾俊儒
論文名稱: 奈米型載子調制層對OLED元件之影響
Effects of Nano Carrier-Regulating Layer on Organic Light-Emitting Diode Devices
指導教授: 周卓煇
口試委員: 魏茂國
呂志鵬
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 106
中文關鍵詞: 有機發光二極體載子調制層深藍光擬自然光黑體輻射相似性
外文關鍵詞: OLED, carrier regulating layer, deep blue, pseudo natural light, SRBR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以奈米型載子調制層研製深藍光及擬自然光有機發光二極體(organic light-emitting diodes, OLEDs),探討載子調制層對OLED元件之影響。
    在高效率深藍光OLED的研究方面,使用一螢光藍光材料2,7-bis-{2[phenyl(m-tolyl)amino]-9,9-dimethyl-fluorene-7-yl}-9,9-dimethylfluorene來製備,藉由載子調制層之數量、膜厚及位置的變化,提升元件之效率。在未使用任何載子調制層下,元件在亮度1,000 cd/m2下之能量效率為1.7 lm/W,CIE色座標為(0.143, 0.098);當使用單層及雙層載子調制層後,能量效率由1.7提升至2.1及2.2 lm/W,元件最大亮度也由5,250提升至7,620及9,130 cd/m2,增加45%及74%。亮度之提升可歸因於載子調制層能有效地引導載子再結合於較廣的區域。此外,隨著載子調制層膜厚及位置的變化,元件之光色會有藍位移的現象。
    在擬自然光OLED方面,使用六種可包圍黑體輻射曲線之色域的黑體輻射互補性染料,模擬元件光譜,並藉由雙載子調制層和多發光層元件結構設計,製備多波段擬自然光OLED。自然光在各色溫下皆呈現與黑體輻射相似之平滑且連續的光譜,一個好的人造自然光源應該直接與自然光做比較,因此,對於演色性是否為一個適當的評斷光源品質指標,則令人產生ㄧ些疑慮。為了取代演色性,本研究提出一個新的觀念指標-黑體輻射相似性,即光質應從人眼角度的亮度光譜直接與自然光比較來評斷,而非由機器偵測的能量光譜來量測。此一新指標的提出,可以解決傳統光源品質指標所遇到的困境。
    本研究使用雙載子調制層製備出色溫2,000 K,演色性92,黑體輻射相似性92的超低色溫類夕陽光OLED。依光譜模擬的方法與元件結構設計,也可延伸應用至製作其他色溫之擬自然光OLED。


    In this study, we develope deep-blue and pseudo-natural light organic light-emitting diodes (OLEDs) with nano carrier-regulating layers, and investigate the effects of carrier-regulating layer on organic light-emitting diode devices.
    For high efficiency deep-blue OLED, the device was prepared by incorporating a florescent blue material 2,7-bis-{2[phenyl(m-tolyl)amino]-9,9-
    dimethyl-fluorene-7-yl}-9,9-dimethylfluorene with the variation of the number, thickness , and position of the carrier regulating layers employed to improve the device efficiency. Without the aid of any carrier modulation layer, the deep-blue OLED shows a power efficiency of 1.7 lm W-1 with CIE coordinates of (0.143, 0.098) at 1,000 cd m-2. The respective power efficiency is increased from 1.7 to 2.1 and 2.2 lm W-1 as a single- and double-carrier modulation layers were incorporated. The respective peak luminance also increases from 5,250 to 7,620 and 9,130 cd m-2, an increment of 45% and 74%. The marked brightness improvement may be attributed to the incorporated carrier regulating layers that effectively lead carriers to recombine in a wider zone. Moreover, the blue emission can be tuned deeper by varying the incorporation position of the carrier modulation layer and the emissive layer thickness.
    For pseudo-natural light OLED, the multiple-band pseudo-natural light OLED device was prepared by the spectral simulation and device structure designed with double carrier regulating layers and multiple emissive layers with six blackbody-radiation complementary emitters that form a color gamut to cover the blackbody-radiation locus. Natural light emits like the blackbody-radiation, which exhibits a smooth and continuous spectrum at any given color temperature. Therefore, there remain doubts on the appropriateness of using color rendering index to quantify the quality of lighting sources. To replace it, this study presents a new concept: spectral resemblance with respect to the blackbody-radiation, along with a new index that the quality be determined by comparing the entire spectrum directly against its natural light counterpart from human eyes’ perspective rather than machine-detected intensity. The new indicator may help resolve the dilemma as the traditional color rendering index is adopted as the light quality indicator.
    In this study, we demonstrate a 2,000 K dusk hue-style OLED with a 92 spectral resemblance with respect to the blackbody-radiation and a 92 color rendering index by incorporating double carrier regulating layers. According to the using spectral simulation method and device structure, it also can extend to apply in any desirable color temperature pseudo-natural light OLED.

    中文摘要 Ⅰ 英文摘要 Ⅲ 獻 Ⅴ 誌謝 Ⅵ 目錄 Ⅷ 圖目錄 XI 表目錄 XV 符號說明 XVI 壹、緒論 1 貳、文獻回顧 4 2-1、有機發光二極體的歷史發展 4 2-2、發光原理 14 2-3、螢光深藍光有機發光二極體之發展 26 2-4、白光有機發光二極體之發展 31 2-4-1、單層發光白光元件 32 2-4-2、積層發光白光元件 37 2-5、超高演色性白光有機發光二極體之發展 43 2-5-1、單層多色光發光層白光元件 43 2-5-2、積層單色發光層白光元件 45 參、實驗方法 48 3-1、材料 48 3-2、紫外光吸收光譜 (ultraviolet visible absorption, UV-VIS absorption)量測 53 3-3、光激發光光譜 (photoluminescent spectra, PL spectra)量測 53 3-4、元件製作流程 53 3-4-1、元件電路設計與製作流程 53 3-4-2、基材清洗 54 3-4-3、旋轉塗佈製程 55 3-4-4、蒸鍍製程 56 3-4-5、蒸鍍速率之測定與校正 57 3-5、元件特性之量測與計算 58 3-5-1、發光效率之量測與計算 58 3-5-2、電致發光光譜、色溫及演色性之量測 59 3-6、光譜模擬方法 60 3-7、黑體輻射相似度(SRBR) 61 肆、結果與討論 64 4-1、高效率深藍光OLED元件 64 4-1-1、MDP3FL之吸收光譜與光激發光光譜分析 64 4-1-2、未含載子調制層之深藍光元件 65 4-1-3、含單層載子調制層之深藍光元件 69 4-1-4、含雙層載子調制層之深藍光元件 72 4-2、擬自然光 77 4-2-1、演色性與黑體輻射相似度 77 4-2-2、光譜模擬 81 4-2-3、擬自然光OLED元件 88 伍、結論 97 陸、參考文獻 98

    [1]H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park & K. Lee, Adv. Mater. 2002, 14, 1275.
    [2]J. Lewis, S. Grego, B. Chalamala, E. Vick & D. Temple, Appl. Phys. Lett. 2004, 85, 3450.
    [3]R. Duggal, J. J. Shiang, C. M. Heller & D. F. Foust, Appl. Phys. Lett. 2002, 80, 3470.
    [4]W. D’ Andrade & S. R. Forrest, Adv. Mater. 2004, 16, 1585.
    [5]J. Kido, M. Kimura & K. Nagai, Science 1995, 267, 1332.
    [6]Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest & M. E. Thompson, Science 1997, 276, 2009.
    [7]周卓煇,化工資訊與商情,第八十期,第四頁,民國九十九年。
    [8]K. Ziemelis, Nature, 1999, 399, 408.
    [9]C. W. Tang & S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
    [10]J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn & A. B. Holmes, Nature, 1990, 347, 539.
    [11]O. Prache, Displays., 2001, 22, 49.
    [12]D. Gebeyehu, K. Walzer, G. He, M. Pfeiffer, K. Leo, J. Brandt, A. Gerhard, P. Stößel & H. Vestweber, Syn. Metl., 2005, 148, 205.
    [13]Condit, H. & Grum, F., JOSA, 1964, 54, 937.
    [14]Dixon, E., JOSA, 1978, 68, 437.
    [15]Hernández-Andrés, J., Romero, J., Nieves, J. L. & Lee Jr, R. L., JOSA, 2001, A 18, 1325.
    [16]Judd, D. B. et al., JOSA, 1964, 54, 1031.
    [17]Taylor, A. & Kerr, G., JOSA, 1941, 31, 3.
    [18]A. Bernanose, M. Conet & P. Vouauzx, J. Chem. Phys., 1953, 50, 64.
    [19]P. Pope, H. P. Kallmann & P. J. Magnante, Chem. Phys., 1963, 38, 2042.
    [20]W. Helfrich & W. G. Schneider, Phys. Rev. Lett., 1965, 14, 229.
    [21]W. Helfrich & W. G. Schneider, J. Chem. Phys., 1966, 44, 2902.
    [22]D. F. Williams & M. Schadt, Proc. IEEE, 1970, 58, 476.
    [23]P. S. Vincett, W. A. Barlow, R. A. Hann & G. G. Robert, Thin Solid Films, 1982, 94, 171.
    [24]R. H. Patridge, Polymer, 1983, 24, 733.
    [25]S. A. VanSlyke, C. W. Tang & L. C. Robert, US. Pat., 1988, No. 4,720,432.
    [26]W. Tang, S. A. VanSlyke & C. H. Chen, J. Appl. Phys., 1989, 65, 3610.
    [27]R. H. Friend, J. H. Burroughes & D. D. Bradley, US. Pat., 1993, No. 5,247,190.
    [28]C. Adachi, S. Tokito, T. Tsutsui & S. Saito, Jpn. J. Appl. Phys., 1988, 27, L713.
    [29]M. Era, C. Adachi, T. Tsutsui & S. Saito, Chem. Phys. Lett., 1991, 178, 488.
    [30]J. Kido, M. Kohda, K. Okuyama & K. Nagai, Appl. Phys. Lett., 1992, 61, 761.
    [31]J. Kido, K. Hongawa, K. Okuyama & K. Nagai, Appl. Phys. Lett., 1994, 64, 815.
    [32]J. Kido, M. Kimura & K. Nagai, Science, 1995, 267, 1332.
    [33]J. Shi & C. W. Tang, Appl. Phys. Lett., 1997, 70, 1665.
    [34]G. E. Jabbour, B. Kippelen, N. R. Armstrong & N. Peyghambarian, Appl. Phy. Lett., 1998, 73, 1185.
    [35]J. Kido & T. Mizukami, US. Pat., 2000, No. 6,013,384.
    [36]J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo & S. Liu, Appl. Phys. Lett., 2002, 80, 1.
    [37]M. T. Chu, M. T. Lee, C. H. Chen & M. R. Tseng, Org. Electro., 2009, 10, 1158.
    [38]H. Uoyama, K. Goushi, K. Shizu, H. Nomura & C. Adachi, Nature, 2012, 492, 234.
    [39]M. Pope & C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Second Edition, Oxford University Press, 1999, New York.
    [40]A. Dodabalapur, Bell Lab., Solid State Com., 1997, 102, 259.
    [41]W. D. Gill, J. Appl. Phys., 1972, 43, 5033.
    [42]U. Wolf, V. I. Arkhipov, H. Bässler, Phys. Rev. B, 1999, 59, 7507.
    [43]M. A. Lampert & P. Mark, “Current Injection in Solids”, 1970, Academic Press, New York.
    [44]P. N. Murgatroyd, J. Phys. D, 1970, 3, 151.
    [45]J. Frenkel, Phys. Rev., 1938, 54, 647.
    [46]J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li & R. S. Liu, Org. Electron., 2007, 8, 29.
    [47]S. Miyata & H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 1.
    [48]K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi & K. Seki, J. Appl. Phys., 1998, 83, 4928.
    [49]T. Förster, Ann. Phys., 1948, 6, 55.
    [50]L. Dexter, J. Chem. Phys., 1953, 21, 836.
    [51]W. S. Huang, J. T. Lin, C. H. Chien, Y. T. Tao, S. S. Sun & Y. S. Wen, Chem. Mater., 2004, 16, 2480.
    [52]S. R. Forrest, International Display Manufacturing Conference (IDMC), 2003.
    [53]V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov & S. R. Forrest, Phys. B , 1998, 58(7), 3730.
    [54]Commission Internationale de L’eclairage (CIE), Colorimetry, Publication Report No. 15.2, 1986.
    [55]C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen & Y. Y. Chien, Adv. Mater., 2004, 16, 61.
    [56]A. Saitoh, N. Yamada, M. Yashima & K. Okinaka, Proceedings of SID, 2004, P.150, May 23-28, Seattle, Washington, USA.
    [57]M. T. Lee, C. H. Liao, C. H. Tsai & C. H. Chen, Adv. Mater., 2005, 17, 2493.
    [58]J. Y. Lee, C. W. Joo, S. O. Jeon & K. S. Yook, Adv. Func. Mater., 2009, 19, 3644.
    [59]C. G. Zhen, Z. K. Chen, Q. D. Liu, Y.F. Dai, R.Y.C. Shin, S. Y. Chang & J. Kieffer, Adv. Mater., 2009, 21, 2425.
    [60]A. P. Kulkarni, A. P. Gifford, C. J. Tonzola, and S. A. Jenekhe, Appl. Phys. Lett., 2005, 86, 061106.
    [61]M. H. Ho, Y. S. Wu, S. W. Wen, M. T. Lee, T. M Chen, C. H. Chen et. al., Appl. Phys. Lett., 2006, 89, 252903.
    [62]S. K. Kim, Y. I. Park, I. N. Kang & J.W. Park, J. Mater. Chem., 2007, 17, 4670.
    [63]Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae & S. K. Kwon, Adv. Mater., 2001, 13, 1690.
    [64]S. K. Kim, B. Yang, Y. Ma, J. H. Lee & J. W. Park, J. Mater. Chem., 2008, 18, 3376.
    [65]C. H. Chien, C. K. Chen, F. M. Hsu, C. F. Shu, P. T. Chou & C. H. Lai, Adv. Func. Mater., 2009, 19, 560.
    [66]C. J. Zheng, W. M. Zhao, Z. Q. Wang, D. Huang, J. Ye, X. M. Ou, X. H. Zhang. C. S. Lee & S. T. Lee, J. Mater. Chem., 2010, 20, 1560.
    [67]J. H. Jou, Y. P. Lin, M. F. Hsu, M. H. Wu & P. Lu, Appl. Phys. Lett., 2008, 92, 193314.
    [68]L. Wang, Y. Jiang, J. Luo, Y. Zhou, J Zhou, J. Wang & J Pei, Y. Cao, Adv. Mater., 2009, 21, 4854.
    [69]J. H. Jou, C. H. Chen, J. R. Tseng, S. H. Peng, P. W. Chen, C. I. Chiang, Y. C. Jou, J. H. Hong, C. C. Wang, C. C. Chen, F. C. Tung, S. H. Chen, Y. S. Wang & C. L. Chin, J. Mater. Chem. C, 2013, 1, 394.
    [70]J. Kido, K. Hongawa, K. Okuyama & Nagai, Appl. Phys. Lett., 1994, 64, 815.
    [71]J. Kido, H. Shionoya & K. Nagai, Appl. Phys. Lett., 1995, 67, 2281.
    [72]B. W. D’Andrade, R. J. Holmes & S. R. Forrest, Adv. Mater., 2004, 16, 624.
    [73]J. H. Jou, Y. S. Chiu, R. Y. Wang, C. P. Wang, Y. C. Huang, C. S. Lin, C. H. Cheng & C. I. Chao, 2005 IDMC International Display Manufacturing Conference and Exhibition, Taipei, 2005.
    [74]Y. Shao & Y. Yang, Appl. Phys. Lett., 2005, 86, 073510.
    [75]J. H. Jou, Y. S. Chiu, R. Y. Wang, H. C. Hu, C. P. Wang & H. W. Lin, Organic Electronics, 2005, 7, 8.
    [76]J. H. Jou, M. H. Wu, C. P. Wang, Yung-Sheng Chiu, P. H. Chiang, H. C. Hu & R. Y. Wang, Organic Electronics, 2007, 8, 735.
    [77]J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue & C. C. Chiang, Organic Electronics, 2008, 9, 291.
    [78]S. Naka, K. Shinno & H. Anada, Electron. Trans. IEICE., 1997, 80, 1114.
    [79]C. H. Chuen & Y. T. Tao, Appl. Phy. Lett., 2002, 81, 4499.
    [80]C. H. Chuen, Y. T. Tao, F. I. Wu & C. F. Shu, Appl. Phy. Lett., 2004, 85, 4609.
    [81]林瑋哲, 碩士論文, 國立清華大學材料科學與工程研究所, 2004.
    [82]G. Lei, L. Wang &Y. Qiu, Appl. Phys. Lett., 2004, 85, 5403.
    [83]J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang & H. C. Hu, Appl. Phys. Lett., 2006, 88, 193501.
    [84]J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li & R. S. Liu. Organic Electronics, 2007, 8, 29.
    [85]Q. X. Tong, S. L. Lai, M. Y. Chan, J. X. Tang, H. L. Kwong, C. S. Lee & S. T. Lee, Appl. Phys. Lett., 2007, 91, 023503.
    [86]J. Kido, M. Kimura & K. Nagai, Science, 1995, 267, 1332.
    [87]R. H. Jordan, A. Dodabalapur, M. Strukelj & T. M. Miller, Appl. Phys. Lett., 1996, 68, 1192.
    [88]S. R. Forrest, R. S. Desphande & V. Bulovic, Appl. Phys. Lett., 1999, 75, 888.
    [89]Y. S. Huang, J. H. Jou, W. K. Weng & J. M. Liu, Appl. Phys. Lett., 2002, 80, 2782.
    [90]G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma & S. T. Lee, Appl. Phys. Lett., 2003, 82, 4224.
    [91]Y. F. Zhang, G Cheng, Y. Zhao, J. Y. Hou & S. Y. Liu, Appl. Phys. Lett., 2005, 86, 011112.
    [92]Y. Sun, N. C. Giebink, H. Kanno, B Ma, M. E. Thompson & S. R. Forrest, Nature, 2006, 440, 04645.
    [93]H. Kanno, Y. Sun & S. R. Forrest, Appl. Phys. Lett., 2006, 89, 143516.
    [94]S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem & K. Leo, Nature, 2009, 459, 234.
    [95]Kido, Organic Electroluminescence Material and Display, 2001, Chap17.
    [96]Kido, Organic Electroluminescence Material and Display, 2001, Chap23.
    [97]G. Li & J. Shinar, Appl. Phys. Lett., 2003, 83, 5241.
    [98]S. Tokito, T. Iijima, T. Tsuzuki & F. Sato, Appl. Phys. Lett., 2003, 83, 2459.
    [99]G. Cheng, Y. Zhao, Y. Zhang, S. Liu, F. He, H. Zhang & Y. Ma, Appl. Phys. Lett., 2004, 84, 4457.
    [100]T. S. Liu, Y. S. Wu, M. T. Lee, H. H. Chen, C. H. Liao & C. H. Chen, Appl. Phys. Lett., 2004, 85, 4304.
    [101]G. Lei, L. Wang & Y. Qiu, Appl. Phys. Lett., 2004, 85, 5403.
    [102]Y. C. Tsai & J. H. Jou, Appl. Phys. Lett., 2006, 89, 243521.
    [103]S. J. Su, E. Gonmori, H. Sasabe & J. Kido, Adv. Mater., 2008, 20, 4189.
    [104]I. Navigant Consulting, Energy Savings Potential of Solid-State Lighting in General Illumination Application 2010 to 2030 (2010).
    [105]J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori & J. A. G. Williams, Adv. Mater., 2007, 19, 4000.
    [106]G. Zhou, Q. Wang, C. L. Ho, W. Y. Wong, D. Ma & L. Wang, Chem. Commun., 2009, 3574.
    [107]H. Yang, Y. Shi, Y. Zhao, Y. Meng, W. Hu, J. Hou & S. Liu, Displays, 2008, 29, 327.
    [108]C. H. Chang, K. C. Tien, C. C. Chen, M. S. Lin, H. C. Cheng, S. H. Liu, C. C. Wu, J. Y. Hung, Y. C. Chiu & Y. Chi, Organic Electronics, 2010, 11, 412.
    [109]J. H. Jou, S. M. Shen, C. R. Lin, Y. S. Wang, Y. C. Chou, S. Z. Chen, & Y. C. Jou, Organic Electronics, 2011, 12, 865.
    [110]J. H. Jou, Y. C. Chou, S. M. Shen, M. H. Wu, P. S. Wu, C. R. Lin, R. Z. Wu, S. H. Chen, M. K. Wei & C. W. Wang, Journal of Materials Chemistry, 2011, 21, 18523.
    [111]S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, Adv. Mater., 2003, 15, 1043.
    [112]Schnapf, J., Kraft, T. & Baylor, D., Nature, 1987.
    [113]Sharpe, L. T., Stockman, A., Jagla, W. & Jägle, H., Journal of Vision, 2005, 5.
    [114]Wald, G., Science, 1945, 101, 653.
    [115]S. K. So, W. K. Choi, L. M. Leung & K. Neyts., Appl. Phys. Lett., 1999, 74, 1939.
    [116]J. H. Jou, S. M. Shen, S. H. Chen, M. H Wu, W. B. Wang, H. C. Wang, C. R. Lin, Y. C. Chou, P. H. Wu & J. J. Shyue. Appl. Phys. Lett., 2010, 96, 143306.
    [117]Y. Zheng, S. H. Eom, N. Chopra, J. Lee, F. So & J. Xue, Appl. Phys. Lett., 2008, 92, 223301.
    [118]J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen & C. H. Lin, Advanced Functional Materials, 2013, DOI:10.1002/adfm.201203209.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE