研究生: |
鄭逸生 Yi-Sheng Cheng |
---|---|
論文名稱: |
週期線狀結構於鈦矽化物製程中的應力行為 Stress Behaviors of Periodic Lines Structure with Titanium Silicide |
指導教授: |
蔡哲正
Cho-Jen Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 週期結構 、鈦矽化物 、應力 |
外文關鍵詞: | periodic structure, titanium silicide, stress |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗探討的結構是在SiO2線上鍍以固定厚度的鈦和不同厚度的氮化鈦,然後以臨場曲率量測系統得到線狀結構應力隨溫度變化的行為。由應力-溫度曲線可得知結構所表現出最主要的趨勢是由佔有大部分比例的SiO2導致,但鍍在其上的鈦和氮化鈦隨著溫度升高而造成的影響也會表現在曲線上,如鈦吸氧所引起的壓應力和氮化鈦應力疏散使整體應力往張應力方向變化,而這些效應對曲線所造成的影響也會與線寬效應有關,線狀結構的側壁會把對應力的影響疏散掉,當結構有較大線寬時,側壁的數量較少,在曲線上所引起的改變也會較大,而側壁的數量在垂直線方向隨線寬變化較平行線方向來得敏感,所以應力的改變在較小線寬的垂直線方向上可能會看不到。以有限元素分析法模擬結構的應力可輔助解釋實驗上看到的現象,當鈦和氮化鈦越厚時,結構有越小的熱應力,這是因為鈦和氮化鈦的熱膨脹係數較大,可彌補SiO2和矽基版間熱膨脹係數的差異,此項效應隨著線寬越大而越顯著,因為被線狀結構側壁疏散掉的影響越少。透過模擬矽化物形成時,結構中體積的改變情況,可推論曲線在高溫時有一突然往張應力方向的變化是由於反應時體積改變所引起的,但由於應力隨線寬變化的行為與實驗上所觀察到的不符合,因此模擬反應所造成的應力變化還需要更精確的假設。模擬矽化物在結構中的應力以及實驗上退火後的XRD結果和曲線,可得知矽化物的形成使結構的應力較反應前的結構小,在較大的線寬結構時差別會越大,可能是C54-TiSi2的反應越完全所導致。
The stress behaviors of the periodic lines structure with Ti and TiN deposited on SiO2 lines has been investigated by in-situ curvature measurement system. The stress-temperature curves are dominated by the SiO2 lines which are the primary parts in the whole structures, and the curves also present the influences of Ti and TiN, like the compressive stresses from oxygen-absorbing of Ti layers and the change toward tensile stress by stress relaxation in TiN layers. The effects from Ti and TiN are dependent on the linewidth of the structures because the vertical side walls can relax the stresses. The changes of the stresses due to Ti and TiN are larger in structures with larger linewidth because the number of side walls is fewer when the linewidth of the structure is larger. The structures with thicker TiN have smaller thermal stress due to its higher coefficient of thermal expansion decrease the differences between the line-like SiO2 layer and the substrate.
[1] J. P. Gambino and E. G. Colgan, “Silicide and ohmic contacts”, Materials Chemistry and Physics 52, p.99 (1998)
[2] 莊達人, “VLSI製程技術”, 高立圖書有限公司, p. 172 (1995)
[3] R. Beyers and R. Sinclair, “Metastable phase formation in titanium-silicon thin films”, J. Appl. Phys. 57, p. 5240 (1985)
[4] R. Pantel, D. Levy, D. Nicolas and J. P. Ronpon, ”Oxygen behavior during titanium silicide formation by rapid thermal annealing”, J. Appl. Phys. 62(10), p. 4319 (1987)
[5] Z. Ma and L. H. Allen, “Kinetic mechanisms of the C49-to-C54 polymorphic transformation in titanium disilicide thin films: A microstructure-scaled nucleation-mode transition”, Phys. Rev B 49, p. 13501 (1994)
[6] H. J. W. van Houtum, I. J. M. M. Raaijmakers, and T. J. M. Menting, “Influence of grain size on the transformation temperature of C49 TiSi2 to C54 TiSi2”, J.Appl. Phys. 61, p. 3116 (1987)
[7] Q. Z. Hong, J. A. Kittl, and M. S. Rodder, “Advanced Metallization for ULSI Applications in 1995”, p. 431–438. (1996)
[8] S. B. Herner and M. A. Vyvoda. “Low resistivity TiSi2 on narrow p+ polycrystalline silicon lines”, Appl. Phys. Lett., 81(2), p. 259 (2002)
[9] E. Ganin, S. Wind, P. Ronsheim, A. Yapsir, K. Barmak, J. Bucchignano, and R. Assenza, “Rapid Thermal and Integrated Processing II“ Mater. Res. Soc. Symp. Proc. 303, p. 109 (1993)
[10] F. Ritcher, E. Bugiel, H. B. Erzgraber and D. Panknin, “Formation of titanium silicide during rapid thermal annealing:influence of oxygen”, J. Appl. Phys. 72(2), p. 815 (1992)
[11] V. Lingwal and N. S. Panwar, “Scanning magnetron-sputtered TiN coating as diffusion barrier for silicon devices”, J. Appl. Phys. 97 (10), p.104902-1 (2005)
[12] I. Suni, M. Maenpaa, M-A. Nicolet and M. Luomajarvi, “Thermal Stability of Hafnium and Titanium Nitride Diffusion Barriers in Multilayer Contacts to Silicon”, J. Electrochem. Soc. 130, p. 1215 (1983)
[13] L. B. Freund, S. Suresh, “Thin film materials:Stress, defect formation and surface evolution”, Cambridge university press, p.61 (2003)
[14] T. -S. Park, and S. Suresh, “Effects of line and passivation geometry on curvature evolution during processing and thermal cycling in copper interconnect lines”, Acta mater. 48, p. 3169 (2000)
[15] Y.-L. Shen, Y. L. Guo,” Designing test interconnect structures for micro-scale stress measurement: An analytical guidance”, J. Vac. Sci. Technol. B 17(2), p. 448 (1999)
[16] Y.-L. Shen, “Modeling of thermal stresses in metal interconnects : Effect of line aspect ratio”, J. Appl. Phys. 82 (4), p. 1578 (1997)
[17] Y.-L. Shen, S. Suresh, and I. A. Blech, “Stresses, curvatures and shape changes arising from patterned lines on silicon wafers”, J. Appl. Phys.80 (3), p. 1388 (1996)
[18] T. S. Timoshenko, “Strength of Materials, 3rd edition”, Krieger, Huntington, New York, Chap. 4 (1976)
[19] R. W. Hoffman, “Physics of thin film:Vol. 3”, Academic, New York, p. 211 (1966)
[20] C. Y. Ting, F. M. d’Heurle, S. S. Iyer and P. M. Fryer, “High temperature process limitation of TiSi2”,SOLID STATE SCIENCE AND TECHNOLOGY”, 133 (12), p. 2621 (1986)
[21] 林威成,“Effects of TiN Capped Layer on Ti/Si Reaction System”, 國立清華大學論文, (2005)
[22] I. J. M. M. Raaijmarker and K. B. Kim, “A comparison of the reaction of titanium with amorphous and monocrystalline silicon ”, J. Appl. Phys. 67 (10), p. 6255 (1990)
[23] W. Lur and L. J. Chen, “Growth kinetic of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin-film and single-crystal Si”, Appl. Phys. Lett. 54 (13), p. 1217 (1989)
[24] H . R . Liauh, M . C . Chen, J. F. Chen, L. J. Chen, “Schottky barrier heights of the amorphous interlayer/Si interfaces in titanium thin films on (001)Si”, Appl. Phys. Lett. 61 (16), p. 2167 (1992)
[25] K. Maex and M. V. Rossum, “Properties of metal silicides”, INSPEC, London, United Kingdom (1995)
[26] P. Fornara and A. Poncet, “Modeling of local reduction in TiSi2 and CoSi2 growth near spacer in MOS technologies : influence of mechanical strss and main diffusing species”, IEEE, p. 73 (1996)
[27] B. Chenevier, Chaix-Pluchery, I. Matko, J. P. Se´nateur, R. Madar, and F. La Via, “ In situ investigations of the metal/silicon reaction in Ti/Si thin films capped with TiN: Volumetric analysis of the C49–C54 transformation” Appl. Phys. Lett. 79(14), p. 2184 (2001)
[28] K. L. Saenger, C. Cabral, Jr., L. A. Clevenger, and R. A. Roy, “Investigation of titanium silicide formation in Ti+Si reactions using infrared spectroscopy and x-ray diffraction”, J. Appl. Phys.77 (10), p. 5156 (1996)
[29] 程書彥, “Measurement of Ti ability to absorbing oxygen and TiN stress relaxation by substrate curvature”, 國立清華大學論文, (2006)
[30] Z. Ma, Y. Xu, L. H. Allen and S. Lee, “Nucleation and growth in the initial stage of metastable titanium disilicide formation”, J. Appl. Phys.74 (4), p. 2754 (1993)
[31] C. Torregiani, K. Maex, A. Benedetti, H. Bender, P. Van Houtte, B. J. Pawlak, and J. A. Kittl, “Impact of Ni-silicide grain orientation on the strain and stress fields induced in patterned silicon”, Appl. Phys. Lett. 90 p. 054101, (2007)
[32] R. A. Roy, L. A. Clevenger, C. Cabral, Jr., K. L. Saenger, S. Brauer, J. Jordan-Sweet, J. Bucchignano, G. B. Stephenson, G. Morales, K. F. Ludwig, Jr, “In situ x-ray diffraction analysis of the C49-C54 titanium silicide phase transformation in narrow lines”, Appl. Phys. Lett. 66 (14), p. 1732 (1995)