簡易檢索 / 詳目顯示

研究生: 蔡秉修
Tsai, Bing-Shiou
論文名稱: 功能性梯度層對鍍覆於 AISI D2鋼之氮化鈦鋯鍍層磨潤性之影響
Effect of Functionally Graded Layers on Tribological Behavior of TiZrN Coatings on AISI D2 Steel
指導教授: 黃嘉宏
Huang, Jia-Hong
口試委員: 李志偉
Lee, Jyh-Wei
張銀祐
Chang, Yin-Yu
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 78
中文關鍵詞: 氮化鈦鋯過渡層殘留應力儲存能耐磨性
外文關鍵詞: TiZrN, Transitional layer, Residual stress, Stored energy, Wear resistance
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的為探討氮化鈦過渡層以及鈦介層在氮化鈦鋯/氮化鈦/鈦三層鍍膜中,其對於應力釋放以及磨潤性質所扮演的角色。主要控制參數為改變氮化鈦過渡層的厚度,分別從200到400奈米。試片以非平衡磁控濺鍍法在AISI D2工具鋼上鍍製氮化鈦鋯鍍層,實驗試片共分為三系列,分別為: 單層氮化鈦鋯、雙層氮化鈦鋯/鈦以及氮化鈦鋯/氮化鈦/鈦三層膜。研究中薄膜的氮和金屬比例介於0.9到1.0之間,且鈦和鋯的比例約相等。上層氮化鈦鋯鍍層的硬度介於28.1到31.9 GPa之間,當添加過渡層時硬度稍微下降。添加鈦介層以及氮化鈦過渡層會釋放上層氮化鈦鋯鍍層的殘留應力,釋放量隨過渡層厚度的上升而增加。添加氮化鈦過渡層亦改善鍍層與基材間的附著力,改善幅度隨過渡層厚度上升而增加。氮化鈦鋯鍍層也因為添加了氮化鈦過渡層而改善了磨耗率。從實驗結果發現,磨耗率與鍍層的彈性儲存能(Gs)相關,當鍍層中的彈性儲存能增加時,由於彈性儲存能接近破裂韌性(Gc),導致所能吸收外界施加的能量減少。在磨耗過程中,因為彈性儲存能大小不同,進而影響材料的耐磨性,因此,可以透過彈性儲存能的變化來做為預測鍍層耐磨性的指標。


    The objectives of this study were to investigate the role of TiN transitional layer and Ti interlayer in the tribological behavior of tri-layer TiZrN/TiN/Ti coatings and explore the mechanism of stress relief in the tri-layer coatings. TiZrN coatings were deposited on AISI D2 steel by DC unbalanced magnetron sputtering. There were three series of samples, including single layer TiZrN (S), TiZN/Ti (B), and TiZrN/TiN/Ti (Tx) in this study. The TiN thickness of Tx-series specimens ranged from 200 to 400 nm. The N/(Ti+Zr) ratios of TiZrN layer ranged from 0.9 to 1.0 and the Zr/(Zr+Ti) ratios of TiZrN coating were about 0.5. The hardness of the specimens ranged from 28.1 to 31.9 GPa which slightly decreased by introducing TiN transitional layer. The residual stress of TiZrN layer ranged from -8.56 to -3.28 GPa, decreasing with increasing thickness of interlayer and transitional layer. Lc2 critical loads of all specimens range from 63.2 to 88.6 N. The TiN transitional layer could improve the adhesion strength, and the Lc2 increased as the thickness of transitional layer increased. The wear rate of the tri-layer coatings was lower than that of TiZrN single layer and bilayer coatings. The results indicated that introducing the interlayer and transitional layer could enhance the wear resistance. The wear rate almost linearly increased with increasing stored energy (Gs). The increase of Gs may decrease the capacity in absorbing the external input energy and thereby decreasing the wear resistance. Therefore, Gs could be taken as an index to evaluate the wear resistance of coatings.

    致謝 i 摘要 iii Abstract iv Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Literature Review 2 2.1 Characteristics of Transition Metal Nitride Coating 2 2.2 Characteristics of TiZrN Coating 4 2.2.1 Structure of TiZrN 4 2.2.2 Properties of TiZrN 5 2.3 Effect of Metal Interlayer 7 2.4 Functionally Graded Material (FGM) 8 2.5 Tribological Behavior 9 2.5.1 Adhesion Strength 9 2.5.2 Wear Resistance 10 2.5.3 Effect of Metal Interlayer on Tribological Behavior 11 2.5.4 Effect of Functionally Graded Coatings on Tribological Behavior 12 Chapter 3 Experimental details 13 3.1 Substrate Preparation 13 3.2 Deposition Procedures 13 3.3 Characterization Methods for Structure and Composition 17 3.3.1 Electron Probe Microanalysis (EPMA) 17 3.3.2 Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) 17 3.3.3 X-Ray Diffraction (XRD) and Glancing Incidence XRD (GIXRD) 17 3.3.4 Field-Emission Scanning Electron Microscope (FE-SEM) 18 3.3.5 Atomic Force Microscope (AFM) 18 3.4 Characterization Methods for Mechanical Properties 19 3.4.1 Hardness and Young’s modulus (nanoindentation) 19 3.4.2 Residual stress: AXS method 19 3.4.3 Adhesion 21 3.4.4 Wear resistance 23 Chapter 4 Results 25 4.1 Structure 28 4.1.1 Chemical Composition 28 4.1.2 Crystal Structure 30 4.1.3 Microstructure 33 4.1.4 Surface Roughness 36 4.2 Properties 39 4.2.1 Hardness and Young’s Modulus 39 4.2.2 Residual Stress 39 4.2.3 Adhesion Strength 41 4.2.4 Wear Resistance 45 Chapter 5 Discussion 52 5.1 Residual Stress 52 5.1.1 The Role of TiN Transitional-layer and Ti Interlayer in Tri-layer TiZrN/TiN/Ti Coatings 52 5.1.2 Stress-relief Induced Microcracks (SIMC) 57 5.2 Wear Resistance 59 5.2.1 Mechanism of Failure Mode 59 5.2.2 Wear Rate 59 5.3 Adhesion Strength 63 Chapter 6 Conclusions 65 Reference 66 Appendix A Heat Treatment Procedures of D2 Steel Substrate 72 Appendix B SEM Images 73 Appendix C EDS-mapping 76 Appendix D AXS Linear Regression Fitting 78

    [1] P.-C. Chih, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, Master Thesis, National Tsing Hua University, R.O.C, (2017).
    [2] M. Stoiber, E. Badisch, C. Lugmair, C. Mitterer, Low-friction TiN coatings deposited by PACVD, Surf. Coat. Technol. 163 (2003) 451-456.
    [3] D. Pilloud, A. Dehlinger, J. Pierson, A. Roman, L. Pichon, Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics, Surf. Coat. Technol. 174 (2003) 338-344.
    [4] P.J. Kelly, T. vom Braucke, Z. Liu, R.D. Arnell, E.D. Doyle, Pulsed DC titanium nitride coatings for improved tribological performance and tool life, Surf. Coat. Technol. 202 (2007) 774-780.
    [5] J. Stimmell, Properties of dc magnetron reactively sputtered TiN, J. V. Sci Technol. B, Microelectronics and Nanometer Structures 4 (1986) 1377-1382.
    [6] N. Pessall, R.E. Gold, H.A. Johansen, A study of supercouductivity in interstitial compounds, J. Phys. Chem. Solids. 29 (1968) 19-38.
    [7] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si (100), Thin Solid Films 405 (2002) 162-169.
    [8] H. A. Wriedt, J.L. Murray, The N-Ti (Nitrogen-Titanium) System, Bulletin of Alloy Phase Diagrams 8(1987) 378-378.
    [9] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus. 27 (2006) 551-551.
    [10] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol. 191 (2005) 17-24.
    [11] Z.-B. Qi, P. Sun, F.-P. Zhu, Z.-C. Wang, D.-L. Peng, C.-H. Wu, The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol. 205 (2011) 3692-3697.
    [12] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy, J. Appl. Phys. 72 (1992) 1805.
    [13] E. Török, A. Perry, L. Chollet, W. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films 153 (1987) 37-43.
    [14] K. Chen, L. Zhao, J. Rodgers, S.T. John, Alloying effects on elastic properties of TiN-based nitrides, J. Phys. D: Appl. Phys. 36 (2003) 2725-2729.
    [15] A.J. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films 193-194 (1990) 463-471.
    [16] D. Maheo, J.M. Poitevin, Microstructure and electrical resistivity of TiN films deposited on heated and negatively biased silicon substrates, Thin Solid Films 237 (1994) 78-86.
    [17] P. Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J. Appl. Phys. 30 (1991) 1463-1468.
    [18] O. Knotek, M. Böhmer, T. Leyendecker, F. Jungblut, The structure and composition of Ti-Zr-N, Ti-Al-Zr-N and Ti-Al-V-N coatings, Mater. Sci. Eng. A 105 (1988) 481-488.
    [19] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films 518 (2010) 7308-7311.
    [20] M.B. Takeyama, T. Itoi, E. Aoyagi, Diffusion barrier properties of nano-crystalline TiZrN films in Cu/Si contact systems, Appl. Surf. Sci. 216 (2003) 181-186.
    [21] G. Abadias, V.I. Ivashchenko, L. Belliard, P. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Mater. 60 (2012) 5601-5614.
    [22] J.-H. Huang, Y.-F. Chen, G.-P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions, Surf. Coat. Technol. 358 (2019) 487-496.
    [23] P. Yan, J. Deng, Y. Lian, J. Zhao, Z. Chen, X. Ai, Effect of depositing parameters on microstructures and properties of multi arc ion plating ZrTiN films, Surf. Eng. 28 (2012) 17-23.
    [24] Y.-W. Lin, J.-H. Huang, G.-P. Yu, C.-N. Hsiao, F.-Z. Chen, Influence of ion bombardment on structure and properties of TiZrN thin film, Appl. Surf. Sci. 354 (2015) 155-160.
    [25] O. Knotek, F. Löffler, G. Krämer, Arc-deposited Ti-Zr-N coatings on cemented carbides for use in interrupted cutting, Surf. Coat. Technol. 49 (1991) 325-329.
    [26] O. Knotek, F. Löffler, G. Krämer, Cutting performance of multicomponent and multilayer coatings on cemented carbides and cermets for interrupted cut machining, Met. Hard Mater. 14 (1996) 195-202.
    [27] Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol. 350 (2018) 745-754.
    [28] W. Cui, J. Cheng, Z. Liu, Bio-tribocorrosion behavior of a nanocrystalline TiZrN coating on biomedical titanium alloy, Surf. Coat. Technol. 369 (2019) 79-86.
    [29] G. Abadias, L.E. Koutsokeras, P. Guerin, P. Patsalas, Stress evolution in magnetron sputtered Ti–Zr–N and Ti–Ta–N films studied by in situ wafer curvature: Role of energetic particles, Thin Solid Films 518 (2009) 1532-1537.
    [30] H.-L. Liu, Measurement of residual stress of TiZrN thin films by combining average X-ray strain (AXS) and nanoindentation methods, Master Thesis, National Tsing Hua University, R.O.C, (2015).
    [31] E. Hong, T. Kim, S.-H. Lee, J.-W. Lee, H. Lee, Atomic structure and residual stress of carbon-doped TiMeN (Me = Zr, Al, and Cr) coatings on mechanical properties, Ceram. Int. 45 (2019) 9192-9196.
    [32] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol. 201 (2007) 7043-7053.
    [33] F. Shieu, L. Cheng, M. Shiao, S. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films 311 (1997) 138-145.
    [34] C.-H. Ma, J.-H. Huang, H.-D. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films 446 (2004) 184-193.
    [35] G. Kim, S. Lee, J. Hahn, B. Lee, J. Han, J. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Technol. 171 (2003) 83-90.
    [36] A.-N. Wang, J.-H. Huang, H.-W. Hsiao, G.-P. Yu, H.-D. Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surf. Coat. Technol. 280 (2015) 43-49.
    [37] J. Creus, H. Idrissi, H. Mazille, F. Sanchette, P. Jacquot, Improvement of the corrosion resistance of CrN coated steel by an interlayer, Surf. Coat. Technol. 107 (1998) 183-190.
    [38] R. Daniel, K. Martinschitz, J. Keckes, C. Mitterer, The origin of stresses in magnetron-sputtered thin films with zone T structures, Acta Mater. 58 (2010) 2621-2633.
    [39] T.-W. Zheng, Effect of Ti Interlayer on Stress Relief of ZrN/Ti Bilayer Thin Film on Silicon Substrate, Master Thesis, National Tsing Hua University, R.O.C, (2018).
    [40] S. Jeon, J. Ryu, H.-G. Shin, J. Lee, H. Lee, Local atomic structures and degradation behaviors of Ti1−xZrxN coatings under laser thermal shock, Mater. Charact. 131 (2017) 374-379.
    [41] C. Huang, Y. Zhang, R. Vilar, J. Shen, Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate, Mater. Des. 41 (2012) 338-343.
    [42] Y.-Y. Chang, C.-P. Chang, Microstructural and mechanical properties of graded and multilayered AlxTi1-xN/CrN coatings synthesized by a cathodic-arc deposition process, Surf. Coat. Technol. 204 (2009) 1030-1034.
    [43] S. Yang, K.E. Cooke, X. Li, F. McIntosh, D.G. Teer, CrN-based wear resistant hard coatings for machining and forming tools, J. Phys. D: Appl. Phys. 42 (2009) 104001-104008.
    [44] M. Rahman, J. Haider, D.P. Dowling, P. Duggan, M.S. J. Hashmi, Deposition of magnetron sputtered TiN+MoSx coating with Ti–TiN graded interlayer, Surf. Coat. Technol. 200 (2005) 1071-1075.
    [45] H. Gleiter, Nanostructured materials: state of the art and perspectives, Nanostruct. Mater. 6 (1995) 3-14.
    [46] F. Erdogan, A.C. Kaya, P.F. Joseph, The crack problem in bonded nonhomogeneous materials, J. Appl. Mech. 58 (1991) 410-418.
    [47] F. Erdogan, Fracture mechanics of functionally graded materials, Compos. Eng. 5 (1995) 753-770.
    [48] S. Suresh, A. Mortensen, Fundamentals of functionally graded materials, The Institute of Materials, 1998, London.
    [49] S. Suresh, Graded materials for resistance to contact deformation and damage, Sci. 292 (2001) 2447-2451.
    [50] X.-C. Zhang, B.-S. Xu, H.D. Wang, Y. Jiang, Y.-X. Wu, Application of functionally graded interlayer on reducing the residual stress discontinuities at interfaces within a plasma-sprayed thermal barrier coating, Surf. Coat. Technol. 201 (2007) 5716-5719.
    [51] M. Bartosik, R. Daniel, C. Mitterer, I. Matko, M. Burghammer, P.H. Mayrhofer, J. Keckes, Cross-sectional X-ray nanobeam diffraction analysis of a compositionally graded CrNx thin film, Thin Solid Films 542 (2013) 1-4.
    [52] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films 117 (1984) 243-249.
    [53] M.T. Laugier, Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides, J. Mater. Sci. 21 (1986) 2269-2272.
    [54] P.A. Steinmann, Y. Tardy, H.E. Hintermann, Adhesion testing by the scratch test method: the influence of intrinsic and extrinsic parameters on the critical load, Thin Solid Films 154 (1987) 333-349.
    [55] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests, Thin Solid Films 270 (1995) 431-438.
    [56] J. Takadoum, H.H. Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coat. Technol. 96 (1997) 272-282.
    [57] C. Carrasco, N. Mingolo, J. Rı́os, The relationship between residual stress and process parameters in TiN coatings on copper alloy substrates, Mater. Charact. 48 (2002) 81-88.
    [58] C.-I. Chiu, Effect of processing parameter on wear resistance and mechanical properties of thick TiN coatings on D2 steel deposited by unbalanced magnetron sputtering, Master Thesis, National Tsing Hua University, R.O.C, (2014).
    [59] U. Helmersson, B.O. Johansson, J.E. Sundgren, H.T.G. Hentzell, P. Billgren, Adhesion of titanium nitride coatings on high‐speed steels, J. Vac. Sci. Technol. A 3 (1985) 308-315.
    [60] T. Polcar, N. M.G. Parreira, R. Novák, Friction and wear behaviour of CrN coating at temperatures up to 500 °C, Surf. Coat. Technol. 201 (2007) 5228-5235.
    [61] S. Wilson, A.T. Alpas, Effect of temperature and sliding velocity on TiN coating wear, Surf. Coat. Technol. 94 (1997) 53-59.
    [62] S. Wilson, A.T. Alpas, TiN coating wear mechanisms in dry sliding contact against high speed steel, Surf. Coat. Technol. 108 (1998) 369-376.
    [63] Z. Huang, Y. Sun, T. Bell, Friction behaviour of TiN, CrN and (TiAl) N coatings, Wear 173 (1994) 13-20.
    [64] S. Wilson, A.T. Alpas, Wear mechanism maps for TiN-coated high speed steel, Surf. Coat. Technol. 120 (1999) 519-527.
    [65] D. Valerini, M.A. Signore, L. Tapfer, E. Piscopiello, U. Galietti, A. Rizzo, Adhesion and wear of ZrN films sputtered on tungsten carbide substrates, Thin Solid Films 538 (2013) 42-47.
    [66] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (2000) 1-11.
    [67] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol. 239 (2014) 20-27.
    [68] W.-L. Pan, G.-P. Yu, J.-H. Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surf. Coat. Technol. 110 (1998) 111-119.
    [69] K.A. Pischow, L. Eriksson, E. Harju, A.S. Korhonen, E. Ristolainen, The influence of titanium interlayers on the adhesion of PVD TiN coatings on oxidized stainless steel substrates, Surf. Coat. Technol. 58 (1993) 163-172.
    [70] J.-Y. Chen, G.-P. Yu, J.-H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel, Mater. Chem. Phys. 65 (2000) 310-315.
    [71] B.-F. Chen, W.-L. Pan, G.-P. Yu, J. Hwang, J.-H. Huang, On the corrosion behavior of TiN-coated AISI D2 steel, Surf. Coat. Technol. 111 (1999) 16-21.
    [72] J.-L. Lin, B. Mishra, S. Myers, P. Ried, J.J. Moore, The Development of a Nanostructured, Graded Multilayer Cr-CrxNy-Cr1-xAlxN Coating Produced by Pulsed Closed Field Unbalanced Magnetron Sputtering (P-CFUBMS) for Use in Aluminum Pressure Die Casting Dies, J. Nanosci. Nanotechnol. 9 (2009) 3514-3523.
    [73] P. Yan, J. Deng, Z. Wu, S. Li, Y. Xing, J. Zhao, Friction and wear behavior of the PVD (Zr,Ti)N coated cemented carbide against 40Cr hardened steel, Met. Hard Mater. 35 (2012) 213-220.
    [74] K.D. Bouzakis, S. Makrimallakis, G. Katirtzoglou, G. Skordaris, S. Gerardis, E. Bouzakis, T. Leyendecker, S. Bolz, W. Koelker, Adaption of graded Cr/CrN-interlayer thickness to cemented carbide substrates' roughness for improving the adhesion of HPPMS PVD films and the cutting performance, Surf. Coat. Technol. 205 (2010) 1564-1570.
    [75] P. Yi, L. Peng, J. Huang, Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process, Mater. Sci. Eng. C Mater. Biol. Appl. 59 (2016) 669-676.
    [76] P. Scherrer, Bestimmung der Grösse und der innern Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr. 2 (1918) 98-100.
    [77] L.V. Azaroff, M.J.Buger The powder method in X-ray crystallography, McGraw- Hill, New York, 1958.
    [78] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
    [79] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47.
    [80] B.B. He, Stress Measurement, in: Two-Dimensional X-Ray Diffraction, John Wiley & Sons, Inc., 2009, pp. 249-328, Hoboken, New Jersey.
    [81] M.B. Kanoun, G.S. Souraya, Effect of alloying on elastic properties of ZrN based transition metal nitride alloys, Surf. Coat. Technol. 255 (2014) 140-145.
    [82] M. Odén, C. Ericsson, G. Håkansson, H.J.S. Ljungcrantz, Microstructure and mechanical behavior of arc-evaporated Cr–N coatings, Surf. Coat. Technol. 114 (1999) 39-51.
    [83] JCPDS # 650970.
    [84] JCPDS # 650972.
    [85] JCPDS # 895009.
    [86] Y.-X. Wang, S. Zhang, J.-W. Lee, W.-S. Lew, D. Sun, B. Li, Toward hard yet tough CrAlSiN coatings via compositional grading, Surf. Coat. Technol. 231 (2013) 346-352.

    QR CODE