研究生: |
郭昭忠 Kuo, Chao-Chung |
---|---|
論文名稱: |
米爾-基勒-坎南-查特吉循環收縮型的最佳鄰近點定理 Best proximity point theorems of cyclic Meir-Keeler-Kannan-Chatterjea contractions |
指導教授: |
陳啟銘
Chen, Chi-Ming |
口試委員: |
陳正忠
Chen, Jeng-Chung 李俊璋 Lee, Chiun-Chang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 19 |
中文關鍵詞: | 米爾-基勒-坎南-查特吉循環收縮 、米爾-基勒-坎南-查特吉循環收縮 映射對 、度量空間 、最佳鄰近點 |
外文關鍵詞: | Best proximity points, Cyclic Meir-Keeler-Kannan-Chatterjea contraction, Cyclic Meir-Keeler-Kannan-Chatterjea contractive pair, Metric space |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如果方程Tx=x不能解,則探索是否存在一個x與Tx盡可能的靠近的近似解,在度量空間的子集,定點理論是求方程式Tx=x有近似解必不可缺的工具。在本研究中,藉著使用米爾-基勒映射,坎南循環收縮和查特吉循環收縮,我們建立了有關單一函數T的米爾-基勒-坎南-查特吉循環收縮概念的新表示式,其中T是T:A∪B→A∪B,A,B是度量空間(X,d)的非空子集;我們也建立了有關兩個函數對T和S的米爾-基勒-坎南-查特吉循環收縮對概念的新表示式,其中T,S是T:A→B;S:B→A的(T,S)的映射。最後,我們證明了這兩種循環收縮型的表示式都存在最佳鄰近點定理,而我們的結果推廣或改進了許多最近文獻中有關最佳鄰近點定理的研究。
If the equation Tx=x does not find the solution.Fixed point theory is a essential instrument for solving the equation for a mapping defined on a subset of a metric space to explore the existence of an x that is as close to Tx as possible.In this study,by using the Meir-Keeler mapping, cyclic Kannan contraction and cyclic Chatterjee contraction, we establish the notions of cyclic Meir-Keeler-Kannan-Chatterjea contraction T:A∪B→A∪B and cyclic Meir-Keeler-Kannan-Chatterjea contractive pair (T;S) of mappings T:A→B and S:B→A, and then we prove some best proximity point theorems for these various types of cyclic contractions. Our results generalize or improve many recent best proximity point theorems in the literature.
[1] M.A. Al-Thaga, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal., 70 (10) (2009) 3665-3671.
[2] A. Anthony Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006) 1001-1006..
[3] M.A. Al-Thaga, N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Anal., 70 (3) (2009) 1209-1216.
[4] M.A. Al-Thaga, N. Shahzad, Best proximity sets and equilibrium pairs for a nite family of multimaps, Fixed Point Theory Appl., 3 (2008).
[5] C. Di Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic MeirV-Keeler contractions, Nonlinear Anal., 69 (11) (2008) 3790-3794.
[6] W.-S. Du, On coincidence point and xed point theorems for nonlinear multivalued maps,Topology and Applications,159(2012),49-56.
[7] A. Anthony Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006) 1001-1006.
[8] S. Karpagam, S. Agrawal, Best proximity point theorems for p-cyclic Meir&Keeler contractions, Fixed Point Theory Appl., (2009), ID 197308.
[9] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal.Appl., 28(1969), 326-329.
[10] S. Sadiq Basha, P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math. (Szeged) 63(1997), 289-300.
[11] S. Sadiq Basha, P. Veeramani, Best proximity pair theorems for multifunctions with open bres, 103 (2000) 119-129. J. Approx. Theory 103(2000), 119-129.
[12] S. Sadiq Basha, N. Shahzad, and R. Jeyaraj, Optimal approximate solutions of fixed point equations, Abstract and Applied Analysis, (2011),Article ID 174560, 9 pages.
[13] S. Sadiq Basha, Best proximity points: global optimal approximate solutions, Journal of Global Optimization,, 49(2011), no. 1, pp. 15-21.
[14] K. Wlodarczyk, R. Plebaniak, A. Banach, Best proximity points for cyclic and noncyclic set-valued relatively quasi- asymptotic contractions in uniform spaces, Nonlinear Anal.,70(9)(2009)3332-3341.