簡易檢索 / 詳目顯示

研究生: 黃盟欽
Meng-Chin Huang
論文名稱: 直接甲烷固態氧化物燃料電池之特性研究
Study on Characteristics of Direct Methane Solid Oxide Fuel Cell
指導教授: 黃大仁
Ta-Jen Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 126
中文關鍵詞: 固態氧化物燃料電池甲烷電化學促進燃料處理
外文關鍵詞: Solid oxide fuel cell, Methane, Electrochemical promotion, Fuel processing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以甲烷為固態氧化物燃料電池(solid oxide fuel cell,簡稱SOFC)的燃料,進行SOFC陽極之積碳與去積碳之研究。SOFC係解決本世紀能源問題最有潛力的技術之一。近年來,使用甲烷為SOFC燃料的研究已有初步發展,然而陽極的積碳問題相當嚴重,且燃料使用率相當低。本研究以不同操作電壓、溫度及改變SOFC構成材料等變因,探討SOFC在操作時之陽極電化學反應;並於陽極側添加燃料處理觸媒層,對燃料及脫離陽極的生成物進行處理,以提高甲烷燃料的使用效率。
    本研究以直接甲烷固態氧化物燃料電池(direct methane SOFC,簡稱DM-SOFC)進行發電研究,於陽極電化學反應過程中發現”晶格氧抽取之電化學促進(electrochemical promotion of lattice oxygen extraction )”的現象。此現象可抽取SOFC陽極側構成中的晶格氧來與陽極表面的碳反應,有助於減緩DM-SOFC陽極的積碳問題。此現象又引發另一現象,即SOFC可於無燃料時,經由陰極側氧離子填充至SOFC陽極側構成中之氧空缺而放出電流,此電流由本研究定名為”無燃料電流(fuel-free current)”。
    在不同操作電壓的測試中,氧物種(Oδ-)在晶格中傳導所需之電荷δ隨操作電壓的增加而減少。因此,隨著操作電壓升高,電化學促進之效應越明顯。而於不同溫度發電時,氧物種在晶格中傳導所需之電荷則隨操作溫度的增加而減少。由溫度的變化可計算出SOFC在發電過程中晶格氧抽取的活化能為124 kJ/mol,遠將小於無發電狀態時之活化能(262 kJ/mol)。
    於SOFC之陽極側添加金屬催化層的實驗結果顯示,該層的添加可令燃料進入SOFC前,先行進行燃料重組反應,減少DM-SOFC操作時陽極表面的積碳現象。出口組成的分析顯示,無水汽的生成且一氧化碳選擇率由0.702降至0.547,確認有催化層的存在時,可將SOFC反應後的產物進一步處理。本研究結果顯示,在DM-SOFC的操作中添加金屬催化層可以有效地提高甲烷燃料的使用效率,並可長時間地維持SOFC的操作活性。


    In this study, we devoted to research the carbon deposition (coking) and de-coking on the anode of solid oxide fuel cell (SOFC), which fed with the methane flow. This work is considered as the most potential technology to solve the energy problems in this century. In recent years, there are some fuel cell researches using the methane as the fuel, but the fuel efficiency is quite low due to the carbon deposit on anode easily. Herein, we investigated the electrochemical reaction of the SOFC anode with different operating parameters, such as tuning the voltage, temperature or changing the SOFC material. Moreover, in order to improve fuel efficiency, the catalyst layer was added into anode side to deal with the fuel and product.
    In the study of direct methane solid oxide fuel cell (DM-SOFC) , "Electrochemical promotion of lattice oxygen extraction" was observed in the process of electrochemical reaction. This phenomenon was oxygen extracted from lattices on anode side of SOFC reacted with the carbon on the surface of the anode. It can retard the carbon deposition. Furthermore, this phenomenon also brought a kind of current called "the fuel-free current". It’s be resulted the oxygen from the cathode-side three phase boundary (TPB) refilled the vacancies of the bulk lattice-oxygen on the anode side, especially in the absence of fuel.
    As the experimental results, the charge δ of oxygen species (Oδ-) decreased with the operating voltage increased. Thereby, the electrochemical effect was more significant. It also found that the oxygen species for transmission in the lattice decreased with the operating temperature increased. Moreover, the activation energy of lattice oxygen extracted under close-circuit was 124 kJ/mol, smaller than the activation energy under open-circuit (262 kJ/mol).
    When the catalyst layer was introduced to the anode side, the catalyst layer can promote the methane reforming reaction, reduced the coking on the surface of the anode in DM-SOFC. As the results, the carbon monoxide selectivity was about 0.702~0.547, and no water be detected. It showed that the further reaction of the products can be proceeded in presence of the catalyst layer.
    In this study, the addition of the catalyst layer in the DM-SOFC operation effectively improved the fuel efficiency and maintained the SOFC activity in a long-term operation.

    總 目 錄 頁次 中文摘要 英文摘要 總目錄 I 圖目錄 IV 表目錄 IX 第一章 緒論 -------------1 第二章 理論與文獻回顧 -------------6 2.1導氧離子材料 ------------6 2.1.1導氧離子材料簡介 ------------6 2.1.2氧空洞來源 ------------7 2.2固態氧化物燃料電池(SOFC) -------------9 2.2.1 SOFC原理 ------------9 2.2.2 SOFC構造 ------------10 2.2.2.1電解質 -----------10 2.2.2.2陰極 ------------11 2.2.2.3陽極 ------------13 2.3陽極相關化學反應方程式 ------------15 2.4電化學促進(Electrochemical Promotion) ---------------19 2.5催化層 -----------25 2.6研究構想 ------------29 第三章 實驗方法與步驟 ------------31 3.1 實驗藥品 ------------31 3.2 實驗儀器 ------------31 3.3 製備方法 ------------33 3.3.1 材料製備 ------------33 3.3.2 電池單元製備 ------------34 3.4 反應器裝置 ------------35 3.5 實驗流程 ------------36 3.5.1 SOFC電池測試 ------------36 3.5.2 FeCr催化層電池測試 ------------39 第四章 結果與討論 ------------41 4.1 電池單元微結構 ------------41 4.2 電池性能測試 ------------42 4.3 反應時間效應 ------------43 4.4 電流效應 ------------50 4.5 材料效應 ------------68 4.6 溫度效應 ------------83 4.7 以FeCr為NiYSZ/YSZ/Pt電池單元之內部重組器 ----------106 第五章 結論 -----------119 第六章 未來展望 ----------120 參考文獻 ----------122 圖 目 錄 圖1.1 固態氧化物燃料電池系統示意圖-------------------------------------5 圖2.1螢石型氧化物之結構----------------------------------------------7 圖2.2 SOFC內部離子傳導示意圖-------------------------------------------------10 圖2.3 螢石結構材料之導氧離子能力與溫度關係圖 ------------11 圖2.4 YSZ燃料電池內部阻力示意圖 ------------12 圖2.5 金屬觸媒擔載於YSZ上行甲烷蒸氣重組反應時,轉化率與溫度關係圖 ------------14 圖2.6 陽極反應機構簡圖 ------------14 圖2.7 20wt%Ni-ZrO2 水汽前處理之甲烷積碳圖 ------------18 圖2.8 20wt%NiO-ZrO2甲烷積碳圖 ------------18 圖2.9 以Pt/YSZ觸媒行乙烯氧化反應,外加電壓1V ------------19 圖2.10 以Ag/YSZ觸媒行乙烯氧化反應,不同外加電壓及氯化乙烷與選擇率關係圖 ------------20 圖2.11不同功函數與及觸媒位能在活化能上的效應 ------------23 圖2.12在不同外加電壓下,傳統電化學催化觸媒的四種型態 ------------24 圖2.13 Baur-Glaessner圖 ------------27 圖2.14 鐵觸媒在生質氣反應中的相態變化 ------------28 圖2.15金屬支撐型燃料電池示意圖 ------------28 圖3.1 SOFC反應器示意圖 ------------35圖3.2 反應系統裝置圖 ------------36 圖4.1 Ni-YSZ/YSZ/Pt陽極橫截面之SEM圖 ------------41 圖4.2 Ni-YSZ/YSZ/Pt陰極橫截面之SEM圖 ------------42 圖4.3 800℃下,以氫與甲烷為燃料時,SOFC之I-V、I-P圖 ------------43 圖4.4 800℃下,以甲烷為燃料時,等價電流與量測電流之比較 ------------48 圖4.5 800℃下,以甲烷為燃料時,CO與CO2之生成速率 ------------49 圖4.6 800℃下,外部電阻1Ω下,以甲烷為燃料時,陽極側之出口氣體組成及甲烷轉化率 ------------50 圖4.7 800℃下,開路狀況下,以甲烷為燃料時,出口氣體組成及甲烷轉化率。 ------------57 圖4.8 800℃下,以甲烷為燃料時,不同電流密度時等價電流與量測電流之比較 ------------60 圖4.9 800℃下,以甲烷為燃料時,不同電流密度時CO與CO2生成速率 ------------62 圖4.10 800℃下,以甲烷為燃料時,不同電流密度時CO與CO2生成速率比較圖 ------------63 圖4.11 CO及CO2之速率增益率與電壓之線性關係圖 ------------64 圖4.12 CO及CO2之速率增益率與電流之線性關係圖 ------------65 圖4.13 CO及CO2之生成速率(R)與平均氧物種的傳送速率(x)之迴歸分析結果 ------------66 圖4.14 CO與CO2生成速率與ln (r/r0) 對電壓η (voltage)之關係圖 ------------67 圖4.15 800℃下,以氫(H2)與甲烷(CH4)為燃料時Ni-GDC/GDC/Pt電池之I-V與I-P圖 ------------74 圖4.16 800℃下,以甲烷為燃料時,不同電流密度時等價電流與量測電流之比較 ------------76 圖4.17 800℃下,以甲烷為燃料時,不同電流密度時CO與CO2生成速率 ------------78 圖4.18 800℃下,以甲烷為燃料時,不同電流密度時CO與CO2生成速率比較圖 ------------79 圖4.19 CO及CO2之速率增益率與電壓之線性關係圖 ------------80 圖4.20 CO及CO2之速率增益率與電流之線性關係圖 ------------81 圖4.21 CO及CO2之生成速率(R)與平均氧物種的傳送速率(x)之迴歸分析結果 ------------82 圖4.22 在不同溫度下,以氫氣為燃料時,0.61V下,等價電流與量測電流之比較 ------------92 圖4.23 在不同溫度下,以甲烷為燃料時,0.61V下,等價電流與量測電流之比較 ------------94 圖4.24 在不同溫度下,以甲烷為燃料時,0.61V下,CO與CO2之生成速率 ------------97 圖4.25 在不同溫度下,以甲烷為燃料時,開路狀態下,等價電流與量測電流之比較 ------------99 圖4.26 在不同溫度下,以甲烷為燃料時,開路狀態下,CO與CO2之生成速率 ----------102 圖4.27 CO及CO2反應速率增益率與溫度關係圖;線性迴歸 ----------102 圖4.28 以 方程式迴歸,CO及CO2反應速率與1/T之關係圖 ----------103 圖4.29 CO及CO2反應速率增益率與溫度關係圖;線性迴歸 ----------104 圖4.30 CO及CO2之生成速率(R)與平均氧物種的傳送速率(x)之迴歸分析結果 ----------105 圖4.31 以氫氣為燃料時,電阻為1Ω時,等價電流與量測電流之比較,催化層為:FeCr ----------110 圖4.32 以氫氣為燃料時,電阻為1Ω時,等價電流與量測電流之比較,催化層為:YSZ+FeCr ----------111 圖4.33 以氫氣為燃料時,電阻為1Ω時,等價電流與量測電流之比較,催化層為:60%Ni-YSZ+FeCr ----------112 圖4.34 以氫氣為燃料時,電阻為1Ω時,不同催化層時,量測電流之比較 -----------113 圖4.35 以甲烷為燃料時,電阻為1Ω時,等價電流與量測電流之比較,催化層為:FeCr -----------114 圖4.36 以甲烷為燃料時,電阻為1Ω時,等價電流與量測電流之比較,催化層為:YSZ+FeCr -----------115 圖4.37 以甲烷為燃料時,電阻為1Ω時,等價電流與量測電流之比較,催化層為:60%Ni-YSZ+FeCr -----------116 圖4.38 以甲烷為燃料時,電阻為1Ω時,不同催化層時,量測電流之比較 -----------117 圖4.39以甲烷為燃料時,催化層功能示意圖 -----------118 表 目 錄 表1.1 各種燃料電池基本特性的比較 ------------4 表4.1 800℃下,不同反應時間下晶格氧之抽取與填充量 ------------46 表4.2 800℃下,以甲烷為燃料時,不同反應時間之去積碳能力 ------------46 表4.3 在甲烷反應期間,改變不同外部電阻時,晶格氧抽取、填充及促進因子的變化 ------------55 表4.4於甲烷及氬氣時間內所生成之COx總量及氧氣去積碳量及其時間 ------------55 表4.5 在甲烷反應期間CO與CO2之生成量與CO選擇率 ------------56 表4.6在甲烷反應期間每個傳送之氧物種所含之電荷及CO與CO2之生成比例 ------------56 表4.7 CO及CO2之生成速率(R)與平均氧物種的傳送速率(x)之迴歸分析結果 ------------57 表4.8 在甲烷反應期間,改變不同外部電阻時,晶格氧抽取、填充及促進因子的變化 ------------72 表4.9 於甲烷及氬氣時間內所生成之COx總量及氧氣去積碳量及其時間 ------------72 表4.10 在甲烷反應期間CO與CO2之生成量與CO選擇率 ------------73 表4.11 在甲烷反應期間每個傳送之氧物種所含之電荷及CO與CO2之生成比例 ------------73 表4.12 CO及CO2之生成速率(R)與平均氧物種的傳送速率(x)之迴歸分析結果 ------------74 表4.13 電流密度、氧物種傳送及晶格氧的抽取總量的溫度效應 ------------87 表4.14 溫度效應對CO及CO2生成量與CO選擇率的影響 ------------88 表4.15 溫度效應對於促進因子與CO及CO2的法拉弟效率之影響 ------------88 表4.16 溫度效應對於每個氧物種所帶電荷與所生成之CO及CO2比例之影響 ------------89 表4.17 甲烷為燃料時的活化能 ------------89 表4.18 CO及CO2之生成速率(R)與平均氧物種的傳送速率(x)之迴歸分析結果 ------------89 表4.19 電流密度、氧物種傳送及晶格氧的抽取總量的溫度效應 ----------109 表4.20不同催化層對CO及CO2生成量與CO選擇率的影響 ----------109

    1. Proceeding of fuel cell,COE/TPC/ITRI, 1 ,1999.
    2. Rostrup-Nielsen, J. R., in “Catalytic Steam Reforming, Science andEngineering” (J.R. Anderson and M. Boudart, Eds.),Vol. 5. Springer, Berlin, 1984.
    3. J. Soltan Mohammad Zadeh and Kevin J. Smith, “Kinetics of CH4 Decomposition on Supported Cobalt Catalysts”, J. Catal., 176, 1998, 115
    4. T. V. Choudhary, C. Sivadinarayana, C. C. Chusuei, A. Klinghoffer, and D. W. Goodman, “Hydrogen Production via Catalytic Decomposition of Methane”, J. Catal., 199, 2001, 9
    5. Vasant R. Choudhary, Subhabrata Banerjee, Amarjeet M. Rajput, “Hydrogen from step-wise steam reforming of methane overNi/ZrO2: factors affecting catalytic methane decomposition andgasification by steam of carbon formed on the catalyst”, Appl. Catal. A: Gen. 234, 2002, 259
    6. M.A. Ermakova, D.Y. Ermakov, G.G. Kuvshinov, L.M. Plyasova, “New Nickel Catalysts for the Formation of Filamentous Carbon in the Reaction of Methane Decomposition.”, J. Catal., 187, 1999, 77.
    7. Yasuyuki Matsumura, Toshie Nakamori, “Steam reforming of methane over nickel catalysts at low reaction temperature”, Appl. Catal. A: Gen. 258, 2004, 107
    8. Z. Hao, H.Y. Zhu, G.Q. Lu, “Zr-Laponite pillared clay-based nickel catalysts for methane reforming with carbon dioxide”, Appl. Catal. A: Gen., 242, 2003, 275.
    9. T.J. Huang, T.C. Yu, Catal. Lett., “Effect of steam and carbon dioxide pretreatments on methane decomposition and carbon gasification over doped-ceria supported nickel catalyst”, 102, 2005, 175
    10.T.J. Huang, H.C. Lin, T.C. Yu, “Preparative separation and purification of deoxyschisandrin andγ-schisandrin from Schisandra chinensis (Turcz.) Baill by high-speed counter-current chromatography”, Catal. Lett., 105, 2005, 239.
    11.Chunshan Song, “Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century”, Catalysis Today. 77, 2002, 17.
    12. Y. Lin, Z. Zhan, J. Liu, S.A. Barnett, “Direct operation of solid oxide fuel cells with methane fuel”, Solid State Ionics, 176, 2005, 1827.
    13. C. Mallon, K. Kendall, “Sensitivity of nickel cermet anodes to reduction conditions.”, J. Power Sources, 145, 2005, 154.
    14. Manabu Ihara, Keisuke Matsuda, Hikaru Sato, Chiaki Yokoyama, “Solid state fuel storage and utilization through reversible carbon deposition on an SOFC anode”, Solid State Ionics, 175, 2004, 51.
    15. P. Tsiakaras, C. G. Yayenas, “Non-Faradaic Electrochemical Modification of Catalytic Activity VII The Case of Methane Oxidation on Platinum”, J. Catal., 140, 1993, 53.
    16. D. Tsiplakides, C.G. Vayenas, “The absolute potential scale in solid state electrochemistry”, Solid State Ionics 152– 153 , 2002, 625.
    17. Marwood, M.; Vayenas, C. G., “Promotion of Electronically Isolated Pt Catalysts on Stabilized Zirconia”, Journal of Catalysis Electrochemical, 168, 1997, 538.
    18. H. Inaba, H. Tagawa, “Review Ceria-based solid electrolytes”, Solid State Ionics, 83, 1996, 1.
    19. Gorte, J. M. Vohs, “Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons”, J. of Catalysis, 216, 2003, 477.
    20. André Weber, Ellen Ivers-Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, 127, 2004, 273.
    21. Y. Liu, S. Hashimoto, H. Nishino, K. Takei, M. Mori, “Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3−δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs”, Journal of Power Sources 164, 2007, 56.
    22. V.A.C. Haanappel, A. Mai, J. Mertens, “Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes”, Solid State Ionics 177, 2006, 2033.
    23. J.P. Mart´ınez, D.M. L´opez, D.P. Coll, J.C. Ruiz-Morales, P. N´u˜nez, “Performance of XSCoF (X = Ba, La and Sm) and LSCrX_(X_ = Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC”, Electrochimica Acta 52, 2007, 2950.
    24. M.E.S. Hegarty, A.M. O’Connor, J.R.H. Ross,” Syngas production from natural gas using ZrO2-supported metals”, Catalysis Today, 42, 1998, 225.
    25.S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong, “Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique”, J. of Power Sources, 106, 2002, 160.
    26. J.Mizusaki, H.Tagawa and T.Saito, ”Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H2O Atmospheres”,J. Electrochem. Soc., 141, 1994, 2129.
    27.M.J.Saeki,H.Uchida and M.Watanbe, “Noble metal catalysts highly-dispersed on Sm-doped ceria for the application to internal reforming solid oxide fuel cells operated at medium temperature”,Catal Lett., 26, 149, 1994.
    28.M.Watanade, H.Uchida, M.Shibata, N.Mochizuki and K.Amikura, “High Performance Catalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells”,J. Electrochem. Soc., 141, 1994, 342.
    29.Caine M. Finnerty, Neil J. Coe, Robert H. Cunningham, R. Mark Ormerod, ” Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane”, Catalysis Today, 46, 1998, 137.
    30.Olga A. Marina, Mogens Mogensen, “High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode”, Applied Catalysis A: General, 189, 1999, 117.
    31.D. C. Seet, M. C. Wheeler, and C. B. Mullins, “Mechanism of the Dissociative Chemisorption of Methane over Ir(110) – Trapping -Mediated or Direct”, Chem. Phys. Lett., 266, 1997, 431.
    32.M. C. J. Bradford and M. A. Vannice “CO2 reforming of CH4, ”Catal. Rev.-Sci. Eng., 41(1), 1999, 1.
    33.S. Bebelis, C.G. Vayenas, “Non-Faradaic electrochemical modification of catalytic activity. I: The case of ethylene oxidation on Pt”, J. Catal., 108, 1989, 125.
    34.C. Karavasilis, S. Bebelis, C.G. Vayenas, “Non-Faradaic Electrochemical Modification of Catalytic Activity: X. Ethylene Epoxidation on Ag Deposited on Stabilized ZrO2in the Presence of Chlorine Moderators.”, J. Catal., 160, 1996, 190.
    35. D. Tsiplakides and C. G. Vayenas, “Temperature Programmed Desorption of Oxygen from Ag Films Interfaced with Y2O3-Doped ZrO2”, Journal of Catalysis 185, 1999, 237.

    36. C. Pliangos, I. V. Yentekakis, S. Ladas, and C. G. Vayenas, “Non-Faradaic Electrochemical Modification of Catalytic Activity”, J. Catal. 159, 1996, 189.
    37.S. Bebelis, M. Makri, A. Buekenhoudt, J. Luyten, S. Brosda, P. Petrolekas, C. Pliangos, C.G.Vayenas, Electrochemical activation of catalytic reactions using anionic, cationic and mixed conductors, Solid State Ionics 129, 2000, 33.
    38. S. Brosda, C.G. Vayenas, J. Wei, “Rules of chemical promotion” , Applied Catalysis B: Environmental 68, 2006, 109.
    39. J. Nicole, D. Tsiplakides, C. Pliangos, X. E. Verykios, Ch. Comninellis, and C. G. Vayenas, “Electrochemical Promotion and Metal–Support Interactions” Journal of Catalysis 204, 2001, 23.
    40. C.G. Vayenas, “Thermodynamic analysis of the electrochemical promotion of catalysis”, Solid State Ionics 168, 2004, 321.
    41.Tiziana Pipoli, “Sponge Iron Process for Manned Space Exploration ”, 2005.
    42.Hacker Viktor, Faleschini Gottfried, Fuchs Heidrun, Fankhauser Robert, Simader Günter, Ghaemi Mehdi, Spreitz Birgitet, Friedrich Kurt, “Usage of biomass gas for fuel cells by the SIR process”, Journal of Power Sources, 71, 1998, 226.
    43.Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J, “Metal-supported solid oxide fuel cell membranes for rapid thermal cycling.”, Solid State Ionics, 176, 2005, 443.
    44. Chung-Liang Chang A Cuo-Ciang Hsu A Ta-Jen Huang, “Cathode performance and oxygen-ion transport mechanism of copper oxide for solid-oxide fuel cells”, J Solid State Electrochem, 7, 2003, 125.
    45. Ta-Jen Huang, Chun-Hsiu Wang, “Factors in forming CO and CO2 over a cermet of Ni-gadolinia-doped ceria with relation to direct methane SOFCs” Journal of Power Sources 163, 2006, 309.
    46. T. Tagawa, K. Kuroyanagi, S. Goto, S. Assabumrungrat, P. Praserthdam, Selective oxidation of methane in an SOFC-type reactor: effect of applied potential, Chem. Eng. J. 93, 2003, 3
    47. C. Kokkofitis, G. Karagiannakis, S. Zisekas, M. Stoukides, Catalytic study and electrochemical promotion of propane oxidation on Pt/YSZ, J. Catal. 234, 2005, 476.
    48. D. Tsiplakides, S. Balomenou, A. Katsaounis, D. Archonta, C. Koutsodontis, C.G. Vayenas, Electrochemical promotion of catalysis: mechanistic investigations and monolithic electropromoted reactors, Catal. Today 100, 2005, 133.
    49. T.J. Huang, C.H. Wang, Methane decomposition and self de-coking over gadolinia-doped ceria supported Ni catalysts, Chem. Eng. J. 132, 2007, 97.
    50. T.J. Huang, C.H.Wang, Roles of surface and bulk lattice oxygen in forming CO2 and CO during methane reaction over gadolinia-doped ceria, Catal. Lett.
    51. Q.Y. Yang, K.J. Maynard, A.D. Johnson, S.T. Ceyer, The structure and chemistry of CH3 and CH radicals adsorbed on Ni(1 1 1), J. Chem. Phys. 102, 1995, 7734.
    52. I.S. Metcalfe, Electrochemical promotion of catalysis: I: Thermodynamic considerations, J. Catal. 199, 2001, 247.
    53. S.P. Jianga , Y. Ramprakash, “H2 oxidation on NiY–TZP cermet electrodes – polarisation behaviour”, Solid State Ionics, 116, 1999, 145.
    54. S.P. Jianga , Y. Ramprakash, “H2 oxidation on Ni Y–TZP cermet electrodes – a comparison of electrode behaviour by GCI and EIS techniques”, Solid State Ionics, 122, 1999, 211.
    55.A. Q. Pham, R. S. Glass, “Oxygen pumping characteristics of yttria-stabilized-zirconia”, electrochimica acta., 43, 1998, 2699.
    56. C.G. Vayenas, S. Brosda, and C. Pliangos, “The double-layer approach to promotion, electrocatalysis, electrochemical promotion, and metal–support interactions”, Journal of Catalysis, 216, 2003, 487.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE