簡易檢索 / 詳目顯示

研究生: 黃彣軒
Huang, Wen-Hsuan
論文名稱: 節細胞在RCS大鼠視網膜退化過程晚期之形態與生理特性
Morphology and Physiology of Retinal Ganglion Cells in Royal College of Surgeons Rats at Later Stages of Degeneration
指導教授: 焦傳金
Chiao, Chuan-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 47
中文關鍵詞: 視網膜重塑色素性視網膜炎樹突形態
外文關鍵詞: retinal remodeling, retinitis pigmentosa, dendritic morphology
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因感光細胞退化而造成失明的人類先天色素性視網膜炎中,視網膜神經網絡會出現重塑現象。在利用RCS大鼠作為人類色素性視網膜炎的模式動物之研究報告指出,因感光細胞退化晚期所造成之重塑會使內核層細胞與節細胞發生嚴重重組現象。現今色素性視網膜炎的治療方法均是基於殘存神經細胞的功能仍然完好,忽略退化晚期的重塑現象。然而,因為鮮少有針對退化晚期視網膜節細胞特性的研究,故本篇研究希望以形態與電生理的方式描述視網膜節細胞於退化晚期之特性。研究利用出生後331至418天、526至575天的RCS大鼠與兩種正常大鼠(SD及LE),比較其視網膜節細胞在形態是否有差異,另外在RCS及SD大鼠上也進行視網膜節細胞的生理特性初探。在形態研究上是利用顯微注射Neurobiotin染劑的方式去評估節細胞樹突結構與連結模式。在電生理的實驗中,我們與交通大學吳重雨教授合作視網膜晶片計畫,記錄SD大鼠的節細胞對光刺激與電刺激的反應,也記錄RCS大鼠的節細胞對電刺激的反應,其中電刺激的來源是藉由雷射光去引發下視網膜感光二極體矽晶片所產生。雖然我們並沒有發現RCS大鼠的節細胞能對下視網膜晶片的電刺激產生反應,但在節細胞的形態方面,我們卻發現包括節細胞樹突的總長度、樹突分支點的數量、樹突節點的出現率以及染劑連通其他細胞的模式在重塑晚期的RCS大鼠中都相較於正常大鼠有顯著差異。這項發現顯示節細胞的形態在退化晚期的RCS大鼠中已經出現明顯改變,因此這項特性也說明在治療退化晚期色素性視網膜炎的策略上,不能夠假設殘存的視網膜節細胞其功能仍然完好。


    The retinal remodeling is known in a human inherited disease, retinitis pigmentosa (RP), which leads to the loss of vision caused by photoreceptor degeneration. It has been reported in the Royal College of Surgeons (RCS) rat which is one of animal models for studying human retinitis pigmentosa that the degenerated photoreceptors cause a dramatic reorganization of retina, including the inner nuclear layer and the ganglion cell layer, at later stages in the RCS rat. At present treatments for restoring vision in RP founded on the intact properties of remaining neurons, and the remodeling of retinal degeneration at later stages were neglected. However, the morphological features of retinal ganglion cells (RGCs) in the RCS rat at later stages of degeneration have not been carefully studied. Therefore, the goals of this study were to characterize the properties of RGCs at later stages in morphology and electrophysiology. In the present study, we characterized morphological properties of RGCs in two aged groups of RCS rats (P331-418 and P526-575) and two strains of normal rats (SD and LE). In addition, examination of the physiological properties of RGCs in SD and RCS rats was also attempted. The responses of RGCs upon light and electrical stimulations in SD rats, and those upon electrical stimulation in RCS rats were recorded. Microinjection with Neurobiotin was used to assess the dendritic morphologies and coupling patterns of RGCs. In collaboration with Prof. CY Wu (National Chiao Tung University) in retinal prosthesis program, the electrical stimulation was provided by activating a silicone-based microphotodiode array with a 532 nm laser from the subretinal side. Although we did not find RGC responses upon electrical stimulation in the RCS rat, the morphological features of RGCs, including total dendritic length, number of branching points, appearance of dendritic beads, and tracer coupling patterns in the RCS rats were significantly different from those in the normal rats. The finding indicates that RGCs in the RCS rat may undergo significant changes during the retinal remodeling at later stages of degeneration. This also suggests that the strategy of treating RP at later stages cannot assume intact RGCs.

    摘 要 ......................................................................................................................................................... i ABSTRACT ............................................................................................................................................... ii 誌 謝 ....................................................................................................................................................... iv CHAPTER 1. INTRODUCTION .............................................................................................................. 1 1.1 Retinal circuitry .................................................................................................................................. 1 1.2 Loss of vision by photoreceptor degeneration ..................................................................................... 2 1.3 Strategies for restoring of vision ......................................................................................................... 4 1.4 Goals and approaches .......................................................................................................................... 6 CHAPTER 2. MATERIALS AND MATHODS ....................................................................................... 8 2.1 Animals .............................................................................................................................................. 8 2.2 Retina preparation ............................................................................................................................... 9 2.3 Microinjection .................................................................................................................................. 10 2.4 Light and electrical stimulations ....................................................................................................... 11 2.5 Extracellular recording ...................................................................................................................... 12 2.6 Image acquisition .............................................................................................................................. 13 2.7 RGC tracing and classification .......................................................................................................... 13 2.8 Data analysis ..................................................................................................................................... 14 CHAPTER 3. RESULTS .......................................................................................................................... 15 3.1 Morphological classification of RGCs in dystrophic RCS rats and normal rats ............................... 15 3.2 Dendritic features of RGCs in dystrophic RCS rats and normal rats ................................................ 16 3.3 Tracer coupling pattern and dendritic beads of RGCs in dystrophic RCS rats and normal rats........ 17 3.4 Cell number in the GCL and the IPL width in dystrophic RCS rats and normal rats ........................ 18 3.5 Responses of RGCs upon light and electrical stimulations in normal rats ........................................ 18 3.6 Responses of RGCs upon electrical stimulation in RCS rats ............................................................ 20 CHAPTER 4. DISCUSSION .................................................................................................................... 21 4.1 Changes of the RGC morphology in the RCS rat at the later degeneration stages ............................ 21 4.2 Abnormal communication of RGCs in the RCS rats ......................................................................... 22 4.3 Responses of RGCs upon electrical stimulation in normal rats ........................................................ 23 4.4 Responses of RGCs upon electrical stimulation in the RCS rats ...................................................... 24 4.5 Summary .......................................................................................................................................... 25 REFERENCES ......................................................................................................................................... 26 TABLES .................................................................................................................................................... 33 FIGURES .................................................................................................................................................. 35 SUPPLEMENTARY MATERIALS ........................................................................................................ 46

    Ames, A., 3rd & Nesbett, F.B. (1981) In vitro retina as an experimental model of the central nervous system. J Neurochem, 37, 867-877.
    Barhoum, R., Martinez-Navarrete, G., Corrochano, S., Germain, F., Fernandez-Sanchez, L., de la Rosa, E.J., de la Villa, P. & Cuenca, N. (2008) Functional and structural modifications during retinal degeneration in the rd10 mouse. Neuroscience, 155, 698-713.
    Bourne, M.C., Campbell, D.A. & Tansley, K. (1938) Hereditary Degeneration of the Rat Retina. Br J Ophthalmol, 22, 613-623.
    Chen, Z.S., Yin, Z.Q., Chen, S. & Wang, S.J. (2005) Electrophysiological changes of retinal ganglion cells in Royal College of Surgeons rats during retinal degeneration. Neuroreport, 16, 971-975.
    Chu, Y., Humphrey, M.F. & Constable, I.J. (1993) Horizontal cells of the normal and dystrophic rat retina: a wholemount study using immunolabelling for the 28-kDa calcium-binding protein. Exp Eye Res, 57, 141-148.
    Cicerone, C.M. & Green, D.G. (1980) Light adaptation within the receptive field centre of rat retinal ganglion cells. J Physiol, 301, 517-534.
    Cuenca, N., Pinilla, I., Sauve, Y. & Lund, R. (2005) Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats. Eur J Neurosci, 22, 1057-1072.
    D'Cruz, P.M., Yasumura, D., Weir, J., Matthes, M.T., Abderrahim, H., LaVail, M.M. & Vollrath, D. (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet, 9, 645-651.
    de Jong, P.T. (2006) Age-related macular degeneration. N Engl J Med, 355, 1474-1485.
    DeVries, S.H. (2000) Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron, 28, 847-856.
    Dowling, J.E. & Sidman, R.L. (1962) Inherited retinal dystrophy in the rat. J Cell Biol, 14, 73-109.
    Eisenfeld, A.J., LaVail, M.M. & LaVail, J.H. (1984) Assessment of possible transneuronal changes in the retina of rats with inherited retinal dystrophy: cell size, number, synapses, and axonal transport by retinal ganglion cells. J Comp Neurol, 223, 22-34.
    Faktorovich, E.G., Steinberg, R.H., Yasumura, D., Matthes, M.T. & LaVail, M.M. (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature, 347, 83-86.
    Fariss, R.N., Li, Z.Y. & Milam, A.H. (2000) Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am J Ophthalmol, 129, 215-223.
    Fried, S.I., Hsueh, H.A. & Werblin, F.S. (2006) A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol, 95, 970-978.
    Gal, A., Li, Y., Thompson, D.A., Weir, J., Orth, U., Jacobson, S.G., Apfelstedt-Sylla, E. & Vollrath, D. (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet, 26, 270-271.
    Gao, H. & Hollyfield, J.G. (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 33, 1-17.
    Gargini, C., Terzibasi, E., Mazzoni, F. & Strettoi, E. (2007) Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol, 500, 222-238.
    Hamel, C. (2006) Retinitis pigmentosa. Orphanet J Rare Dis, 1, 40.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch, 391, 85-100.
    Hartong, D.T., Berson, E.L. & Dryja, T.P. (2006) Retinitis pigmentosa. Lancet, 368, 1795-1809.
    Huxlin, K.R. & Goodchild, A.K. (1997) Retinal ganglion cells in the albino rat: revised morphological classification. J Comp Neurol, 385, 309-323.
    Jacobs, G.H., Fenwick, J.A. & Williams, G.A. (2001) Cone-based vision of rats for ultraviolet and visible lights. J Exp Biol, 204, 2439-2446.
    Jager, R.D., Mieler, W.F. & Miller, J.W. (2008) Age-related macular degeneration. N Engl J Med, 358, 2606-2617.
    Jensen, R.J. & Rizzo, J.F., 3rd (2006) Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res, 83, 367-373.
    Jensen, R.J. & Rizzo, J.F., 3rd (2007) Responses of ganglion cells to repetitive electrical stimulation of the retina. J Neural Eng, 4, S1-6.
    Jensen, R.J. & Rizzo, J.F., 3rd (2008) Activation of retinal ganglion cells in wild-type and rd1 mice through electrical stimulation of the retinal neural network. Vision Res, 48, 1562-1568.
    Jensen, R.J., Ziv, O.R. & Rizzo, J.F., 3rd (2005) Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes. Invest Ophthalmol Vis Sci, 46, 1486-1496.
    Jones, B.W. & Marc, R.E. (2005) Retinal remodeling during retinal degeneration. Exp Eye Res, 81, 123-137.
    Kong, J.H., Fish, D.R., Rockhill, R.L. & Masland, R.H. (2005) Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol, 489, 293-310.
    Lagali, P.S., Balya, D., Awatramani, G.B., Munch, T.A., Kim, D.S., Busskamp, V., Cepko, C.L. & Roska, B. (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci, 11, 667-675.
    LaVail, M.M. & Battelle, B.A. (1975) Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp Eye Res, 21, 167-192.
    LaVail, M.M., Sidman, R.L. & O'Neil, D. (1972) Photoreceptor-pigment epithelial cell relationships in rats with inherited retinal degeneration. Radioautographic and electron microscope evidence for a dual source of extra lamellar material. J Cell Biol, 53, 185-209.
    Lin, B., Koizumi, A., Tanaka, N., Panda, S. & Masland, R.H. (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A, 105, 16009-16014.
    Machida, S., Raz-Prag, D., Fariss, R.N., Sieving, P.A. & Bush, R.A. (2008) Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest Ophthalmol Vis Sci, 49, 442-452.
    MacLaren, R.E., Pearson, R.A., MacNeil, A., Douglas, R.H., Salt, T.E., Akimoto, M., Swaroop, A., Sowden, J.C. & Ali, R.R. (2006) Retinal repair by transplantation of photoreceptor precursors. Nature, 444, 203-207.
    Marc, R.E., Jones, B.W., Anderson, J.R., Kinard, K., Marshak, D.W., Wilson, J.H., Wensel, T. & Lucas, R.J. (2007) Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci, 48, 3364-3371.
    Marc, R.E., Jones, B.W., Watt, C.B. & Strettoi, E. (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res, 22, 607-655.
    Margolis, D.J., Newkirk, G., Euler, T. & Detwiler, P.B. (2008) Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J Neurosci, 28, 6526-6536.
    Masland, R.H. (2001) The fundamental plan of the retina. Nat Neurosci, 4, 877-886.
    Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., Sasaki, H., Hiroi, K., Nakamura, Y., Shigemoto, R. & et al. (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell, 80, 757-765.
    Mazzoni, F., Novelli, E. & Strettoi, E. (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci, 28, 14282-14292.
    Meyer-Rusenberg, B., Pavlidis, M., Stupp, T. & Thanos, S. (2007) Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy. Graefes Arch Clin Exp Ophthalmol, 245, 1009-1018.
    Mullen, R.J. & LaVail, M.M. (1976) Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science, 192, 799-801.
    Nunemaker, C.S., DeFazio, R.A. & Moenter, S.M. (2003) A targeted extracellular approach for recording long-term firing patterns of excitable cells: a practical guide. Biol Proced Online, 5, 53-62.
    Pavlidis, M., Fischer, D. & Thanos, S. (2000) Photoreceptor degeneration in the RCS rat attenuates dendritic transport and axonal regeneration of ganglion cells. Invest Ophthalmol Vis Sci, 41, 2318-2328.
    Perry, J., Du, J., Kjeldbye, H. & Gouras, P. (1995) The effects of bFGF on RCS rat eyes. Curr Eye Res, 14, 585-592.
    Petit-Jacques, J., Volgyi, B., Rudy, B. & Bloomfield, S. (2005) Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina. J Neurophysiol, 94, 1770-1780.
    Pu, M., Xu, L. & Zhang, H. (2006) Visual response properties of retinal ganglion cells in the royal college of surgeons dystrophic rat. Invest Ophthalmol Vis Sci, 47, 3579-3585.
    Ray, A., Sun, G.J., Chan, L., Grzywacz, N.M., Weiland, J. & Lee, E.J. (2010) Morphological alterations in retinal neurons in the S334ter-line3 transgenic rat. Cell Tissue Res, 339, 481-491.
    Santos, A., Humayun, M.S., de Juan, E., Jr., Greenburg, R.J., Marsh, M.J., Klock, I.B. & Milam, A.H. (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol, 115, 511-515.
    Sekirnjak, C., Hottowy, P., Sher, A., Dabrowski, W., Litke, A.M. & Chichilnisky, E.J. (2008) High-resolution electrical stimulation of primate retina for epiretinal implant design. J Neurosci, 28, 4446-4456.
    Sekirnjak, C., Hulse, C., Jepson, L.H., Hottowy, P., Sher, A., Dabrowski, W., Litke, A.M. & Chichilnisky, E.J. (2009) Loss of responses to visual but not electrical stimulation in ganglion cells of rats with severe photoreceptor degeneration. J Neurophysiol, 102, 3260-3269.
    Shyu, J.S., Maia, M., Weiland, J.D., Ohearn, T., Chen, S.J., Margalit, E., Suzuki, S. & Humayun, M.S. (2006) Electrical stimulation in isolated rabbit retina. IEEE Trans Neural Syst Rehabil Eng, 14, 290-298.
    Sidman, R.L., Pearlstein, R. & Waymouth, C. (1965) Pink-eyed dilution (p) gene in rodents: increased pigmentation in tissue culture. Dev Biol, 12, 93-116.
    Sposato, V., Iovieno, A., Sornelli, F. & Aloe, L. (2008) Axonal transport deficit in the optic nerve of rats with inherited retinitis pigmentosa and experimentally induced glaucoma. Graefes Arch Clin Exp Ophthalmol, 246, 1553-1558.
    Stasheff, S.F. (2008) Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol, 99, 1408-1421.
    Stone, J.L., Barlow, W.E., Humayun, M.S., de Juan, E., Jr. & Milam, A.H. (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol, 110, 1634-1639.
    Strauss, O. (2005) The retinal pigment epithelium in visual function. Physiol Rev, 85, 845-881.
    Sullivan, R.K., Woldemussie, E. & Pow, D.V. (2007) Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Invest Ophthalmol Vis Sci, 48, 2782-2791.
    Sun, W., Li, N. & He, S. (2002) Large-scale morophological survey of rat retinal ganglion cells. Vis Neurosci, 19, 483-493.
    Thyagarajan, S., van Wyk, M., Lehmann, K., Lowel, S., Feng, G. & Wassle, H. (2010) Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci, 30, 8745-8758.
    Villegas-Perez, M.P., Lawrence, J.M., Vidal-Sanz, M., Lavail, M.M. & Lund, R.D. (1998) Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. J Comp Neurol, 392, 58-77.
    Wang, S., Lu, B., Girman, S., Holmes, T., Bischoff, N. & Lund, R.D. (2008) Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration. Invest Ophthalmol Vis Sci, 49, 416-421.
    Wang, S., Lu, B. & Lund, R.D. (2005a) Morphological changes in the Royal College of Surgeons rat retina during photoreceptor degeneration and after cell-based therapy. J Comp Neurol, 491, 400-417.
    Wang, S., Lu, B., Wood, P. & Lund, R.D. (2005b) Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Invest Ophthalmol Vis Sci, 46, 2552-2560.
    Wassle, H. (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci, 5, 747-757.
    Wright, A.F., Chakarova, C.F., Abd El-Aziz, M.M. & Bhattacharya, S.S. (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet, 11, 273-284.
    Zrenner, E. (2002) Will retinal implants restore vision? Science, 295, 1022-1025.
    Zrenner, E., Stett, A., Weiss, S., Aramant, R.B., Guenther, E., Kohler, K., Miliczek, K.D., Seiler, M.J. & Haemmerle, H. (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res, 39, 2555-2567.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE