研究生: |
郭逸嵩 Kuo, I Sung |
---|---|
論文名稱: |
膠體合成法製備少數層二碲化鎢奈米結構及其應用於壓電觸媒之研究 Synthesis of Few-layered Tungsten Ditelluride Nanostructures by Using Colloidal Synthesis Technique and Their Piezocatalysis Properties |
指導教授: |
吳志明
Wu, Jyh Ming |
口試委員: |
嚴大任
Yen, Ta Jen 吳文蒂 Wu, Wen Ti |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 二維過渡金屬硫族化合物 、二碲化鎢 、膠體合成法 、壓電效應 、壓電觸媒 |
外文關鍵詞: | two dimensional transition metal dichalcogenide, tungsten ditelluride, colloidal synthesis technique, piezoelectric response, piezocatalyst |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首度利用膠體合成法成功合成出二碲化鎢花狀形貌的奈米粒子。二碲化鎢屬於過渡金屬硫族化合物,具有Te-W-Te為單位堆疊之層狀結構,由掃描式電子顯微鏡影像得知,二碲化鎢奈米粒子具有高均勻性的粒子尺寸,粒子直徑約500~600nm;經由X光繞射分析、高解析穿透式電子顯微鏡影像及X光光電子能譜儀分析,確認合成出之奈米粒子具有可靠的純度以及良好的結晶性且同時具有2H及1T’(1T distortion)之結構,由穿透式電子顯微鏡影像顯示膠體合成之二碲化鎢奈米粒子具有豐富的少數層,其層間距為0.715 nm,與X光繞射圖譜之分析結果相符合。而由X光光電子能譜儀及能量散佈分析儀之分析可以確認鎢原子與碲原子之鍵結訊號,同時在二碲化鎢奈米粒子表面也會偵測到與氧鍵結的訊號,顯示出膠體合成之二碲化鎢奈米粒子具有長期表面穩定性的問題。進一步利用壓電響應力顯微鏡以及穿隧式原子力顯微鏡分析證實膠體合成之二碲化鎢奈米花之正、逆壓電性質。根據此一特性,對二碲化鎢奈米花進行壓電觸媒實驗分析,結果顯示30 mg之二碲化鎢奈米粒子在超音波震盪作為外加應力源之情況下可將30 ml的亞甲基藍染料(以下簡稱染料)水溶液在10秒內降解至完全透明,且具有重複再利用的優點,在第三次試驗下依舊可將染料水溶液在1分鐘內降解至剩餘10%。
We are the first group to synthesize few-layers tungsten ditelluride (WTe2) nanoflowers, which is a member of two-dimensional transition metal dichalcogenide by using colloidal synthesis technique. The crystal structure of the WTe2 nanoflowers have been confirmed by X-ray diffraction pattern (XRD), Raman, and High-resolution transmission electron microscope (HRTEM). According to the scanning electron microscope (SEM) images, the WTe2 nanoflowers contain a great number of few-layers nanopetals and possess high uniformity. HRTEM image reveals that in each WTe2 nanoflowers own a large number of few layers and have high crystallinity,which confirms that our nanoflowers display a large population of active sites. In addition, the lattice fringes between each single layer is about 0.715nm, which is slightly larger than the reported value of 0.7nm for the WTe2. The piezoresponse force microscopy (PFM) and tunneling atomic force microscopy analysis (TUNA) further indicate that the WTe2 nanoflowers exhibit impressive piezoelectric potential, which is generated from the active edge sites of WTe2 nanoflowers. By the way, piezocatalyst experiment also manifest that these WTe2 nanoflowers can successfully degrade the Methylene blue (MB) dye solution in 10 seconds with the assist of ultrasonic vibration which was served as a mechanical force to induce piezoelectric response.
[1]C.-H.Lee et al., “Tungsten Ditelluride: a layered semimetal,” Sci. Rep., vol. 5, p. 10013, 2015.
[2]F.Schwierz, “Graphene transistors,” Nat. Publ. Gr., vol. 5, no. 7, pp. 487–496, 2031.
[3]J. Q.He, D. W.He, Y. S.Wang, andH.Zhao, “Photocarrier dynamics in transition metal dichalcogenide alloy Mo0.5W0.5S2,” Opt. Express, vol. 23, no. 26, pp. 33370–33377, 2015.
[4]N.Perea-Lõpez et al., “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater., vol. 23, no. 44, pp. 5511–5517, 2013.
[5]J.Guo, X.Chen, Y.Yi, W.Li, andC.Liang, “Layer-controlled synthesis of graphene-like MoS2 from single source organometallic precursor for Li-ion batteries,” RSC Adv., vol. 4, no. 32, pp. 16716–16720, 2014.
[6]D. K.Nandi, U. K.Sen, D.Choudhury, S.Mitra, andS. K.Sarkar, “Atomic layer deposited MoS2 as a carbon and binder free anode in Li-ion battery,” Electrochim. Acta, vol. 146, pp. 706–713, 2014.
[7]W.Wu et al., “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature, vol. 514, no. 7523, pp. 470–474, 2014.
[8]J.Kibsgaard, Z.Chen, B. N.Reinecke, andT. F.Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater., vol. 11, no. 11, pp. 963–969, 2012.
[9]Q.Tang andD.Jiang, “Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles,” ACS Catal., p. acscatal.6b01211, 2016.
[10] J.Yang et al., “Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution,” Angew. Chemie - Int. Ed., vol. 52, no. 51, pp. 13751–13754, 2013.
[11] N. T.Shelke andB. R.Karche, “Hydrothermal synthesis of WS<inf>2</inf>/RGO sheet and their application in UV photodetector,” J. Alloys Compd., vol. 653, pp. 298–303, 2015.
[12] Z.Yin et al., “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74–80, 2012.
[13] K.Nakata andA.Fujishima, “TiO 2 photocatalysis: Design and applications,” J. Photochem. Photobiol. C Photochem. Rev., vol. 13, no. 3, pp. 169–189, 2012.
[14] A.Fujishima, X.Zhang, andD. A.Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep., vol. 63, no. 12, pp. 515–582, 2008.
[15] Y.Lai, M.Meng, Y.Yu, X.Wang, andT.Ding, “Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance,” Appl. Catal. B Environ., vol. 105, no. 3–4, pp. 335–345, 2011.
[16] L. F.Chiang andR. A.Doong, “Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO2 with low Cu addition,” Sep. Purif. Technol., vol. 156, pp. 1003–1010, 2015.
[17] R.Asahi, T.Morikawa, T.Ohwaki, andY.Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science (80-. )., vol. 293, no. 5528, pp. 269–271, 2001.
[18] S.Gu et al., “Facile synthesis of CeO 2 nanoparticle sensitized CdS nanorod photocatalyst with improved visible-light photocatalytic degradation of rhodamine B,” RSC Adv., vol. 5, no. 97, pp. 79556–79564, 2015.
[19] C.Sun, Y.Fu, Q.Wang, L.Xing, B.Liu, andX.Xue, “Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag 2 O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure,” RSC Adv., vol. 6, no. 90, pp. 87446–87453, 2016.
[20] A. H.Zyoud et al., “CdS-sensitized TiO2 in phenazopyridine photo-degradation: Catalyst efficiency, stability and feasibility assessment,” J. Hazard. Mater., vol. 173, no. 1–3, pp. 318–325, 2010.
[21] L.Wang, S.Liu, Z.Wang, Y.Zhou, Y.Qin, andZ. L.Wang, “Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO2 Nanoplatelets via Thermal Stress,” ACS Nano, vol. 10, no. 2, pp. 2636–2643, 2016.
[22] H.Li et al., “Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect,” Nano Lett., vol. 15, no. 4, pp. 2372–2379, 2015.
[23] D.Hong et al., “High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye,” ACS Appl. Mater. Interfaces, vol. 8, no. 33, pp. 21302–21314, 2016.
[24] M. B.Starr andX.Wang, “Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials.,” Sci. Rep., vol. 3, no. 1, p. 2160, 2013.
[25] H.Lin, Z.Wu, Y.Jia, W.Li, R. K.Zheng, andH.Luo, “Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers,” Appl. Phys. Lett., vol. 104, no. 16, pp. 1–5, 2014.
[26] J. M.Wu, W. E.Chang, Y. T.Chang, andC. K.Chang, “Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2Nanoflowers,” Adv. Mater., vol. 28, no. 19, pp. 3718–3725, 2016.
[27] K. N.Duerloo, M. T.Ong, andE. J.Reed, “Intrinsic Piezoelectricity in 2D Materials,” Environment, vol. 3, no. 19, pp. 2871–2876, 2012.
[28] J.Zhou et al., “Large-area and high-quality 2D transition metal telluride,” arXiv, 2016.
[29] C.-H.Lee et al., “Tungsten Ditelluride: a layered semimetal,” Sci. Rep., vol. 5, p. 10013, 2015.
[30] W.Lu et al., “Thin tungsten telluride layer preparation by thermal annealing,” Nanotechnology, vol. 27, no. 41, p. 414006, 2016.
[31] Y.Kim, Y. I.Jhon, J.Park, J. H.Kim, S.Lee, andY. M.Jhon, “Anomalous Lattice Dynamics of Mono-, Bi-, and Tri-layer WTe2,” arXiv:1508.03244, pp. 1–26, 2015.
[32] D.Mao et al., “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small, pp. 1489–1497, 2016.
[33] A. A. F.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang1, Y. Zhang1, S. V. Dubonos, I. V. Grigorieva1, “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., pp. 20–23, 2004.
[34] L. M.Xie, “Two-dimensional transition metal dichalcogenide alloys: preparation{,} characterization and applications,” Nanoscale, vol. 7, no. 44, pp. 18392–18401, 2015.
[35] K. S.Novoselov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
[36] F.Bonaccorso, Z.Sun, T.Hasan, andA. C.Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics, vol. 4, no. 9, pp. 611–622, 2010.
[37] A. H.Castro Neto, F.Guinea, N. M. R.Peres, K. S.Novoselov, andA. K.Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109–162, 2009.
[38] K. S.Novoselov et al., “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 30, pp. 10451–10453, 2005.
[39] Y.Zhu et al., “Graphene and graphene oxide: Synthesis, properties, and applications,” Adv. Mater., vol. 22, no. 35, pp. 3906–3924, 2010.
[40] M.-W.Lin et al., “Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors.,” Nanotechnology, vol. 22, no. 26, p. 265201, 2011.
[41] X.Li, X.Wang, L.Zhang, S.Lee, andH.Dai, “Chemically Derived Ultramooth Graphene Nanoribbon Semiconductors,” Science (80-. )., vol. 319, no. 5867, pp. 1229–1232, 2008.
[42] M. Y.Han, B.Özyilmaz, Y.Zhang, andP.Kim, “Energy Band-Gap Engineering of Graphene Nanoribbons,” Phys. Rev. Lett., vol. 98, no. 20, p. 206805, May2007.
[43] R.Balog et al., “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater., vol. 9, no. 4, pp. 315–319, 2010.
[44] Y.Zhang et al., “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, vol. 459, no. 7248, pp. 820–823, 2009.
[45] J. A.Wilson andA. D.Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., vol. 18, no. 73, pp. 193–335, 1969.
[46] S. A.Han, R.Bhatia, andS.-W.Kim, “Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides,” Nano Converg., vol. 2, no. 1, p. 17, 2015.
[47] R.Lv et al., “Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res., vol. 48, no. 1, pp. 56–64, 2015.
[48] N.Alem, R.Erni, C.Kisielowski, M. D.Rossell, W.Gannett, andA.Zettl, “Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 80, no. 15, pp. 1–7, 2009.
[49] C. R.Dean et al., “Boron nitride substrates for high-quality graphene electronics.,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, 2010.
[50] K.Kalantar-Zadeh, A.Vijayaraghavan, M. H.Ham, H.Zheng, M.Breedon, andM. S.Strano, “Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide,” Chem. Mater., vol. 22, no. 19, pp. 5660–5666, 2010.
[51] M.Osada andT.Sasaki, “Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks,” Adv. Mater., vol. 24, no. 2, pp. 210–228, 2012.
[52] S.Bertolazzi, J.Brivio, andA.Kis, “Stretching and breaking of ultrathin MoS 2,” ACS Nano, vol. 5, no. 12, pp. 9703–9709, 2011.
[53] B.Radisavljevic, M. B.Whitwick, andA.Kis, “Integrated circuits and logic operations based on single-layer MoS2,” ACS Nano, vol. 5, no. 12, pp. 9934–9938, 2011.
[54] A.Splendiani et al., “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 1271–1275, 2010.
[55] K. F.Mak, C.Lee, J.Hone, J.Shan, andT. F.Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, pp. 2–5, 2010.
[56] C.Lee, H.Yan, L. E.Brus, T. F.Heinz, J.Hone, andS.Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2,” ACS Nano, vol. 4, no. 5, pp. 2695–2700, 2010.
[57] G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, andM.Chhowalla, “Photoluminescence from chemically exfoliated MoS 2,” Nano Lett., vol. 11, no. 12, pp. 5111–5116, 2011.
[58] R. A.Gordon, D.Yang, E. D.Crozier, D. T.Jiang, andR. F.Frindt, “Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 65, no. 12, pp. 1254071–1254079, 2002.
[59] G. L.Frey, K. J.Reynolds, R. H.Friend, H.Cohen, andY.Feldman, “Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes,” J. Am. Chem. Soc., vol. 125, no. 19, pp. 5998–6007, 2003.
[60] M. B.Dines, “Lithium intercalation via -Butyllithium of the layered transition metal dichalcogenides,” Mater. Res. Bull., vol. 10, no. 5, pp. 287–291, 1975.
[61] P.Joensen, R. F.Frindt, andS. R.Morrison, “Single-layer MoS2,” Mater. Res. Bull., vol. 21, no. 4, pp. 457–461, 1986.
[62] A. Y. S.Eng, A.Ambrosi, Z.Sofer, P.Šimek, andM.Pumera, “Electrochemistry of transition metal dichalcogenides: Strong dependence on the metal-to-chalcogen composition and exfoliation method,” ACS Nano, vol. 8, no. 12, pp. 12185–12198, 2014.
[63] S.Kirmayer, E.Aharon, E.Dovgolevsky, M.Kalina, andG. L.Frey, “Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites.,” Philos. Trans. A. Math. Phys. Eng. Sci., vol. 365, no. April, pp. 1489–1508, 2007.
[64] G.Cunningham et al., “Solvent Exfoliation of Transition Metal Dichalcogenides : Dispersability of Exfoliated Nanosheets Varies Only Weakly Between Compounds Solvent Exfoliation of Transition Metal Dichalcogenides : Dispersability of Exfoliated Nanosheets Varies Only Weakly Bet,” ACS Nano, vol. 6, no. 4, pp. 3468–3480, 2012.
[65] Z.Zeng et al., “Single-layer semiconducting nanosheets: High-yield preparation and device fabrication,” Angew. Chemie - Int. Ed., vol. 50, no. 47, pp. 11093–11097, 2011.
[66] Z.Zeng et al., “An effective method for the fabrication of few-layer-thick inorganic nanosheets,” Angew. Chemie - Int. Ed., vol. 51, no. 36, pp. 9052–9056, 2012.
[67] V.Nicolosi, M.Chhowalla, M. G.Kanatzidis, M. S.Strano, andJ. N.Coleman, “Liquid Exfoliation of Layered Materials,” Science (80-. )., vol. 340, no. 6139, p. 1226419, 2013.
[68] J. N.Coleman et al., “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” Science (80-. )., vol. 331, no. 6017, pp. 568–571, 2011.
[69] K. K.Liu et al., “Growth of large-area and highly crystalline MoS 2 thin layers on insulating substrates,” Nano Lett., vol. 12, no. 3, pp. 1538–1544, 2012.
[70] Y.Zhan, Z.Liu, S.Najmaei, P. M.Ajayan, andJ.Lou, “Large-area vapor-phase growth and characterization of MoS 2 atomic layers on a SiO 2 substrate,” Small, vol. 8, no. 7, pp. 966–971, 2012.
[71] Y. H.Lee et al., “Synthesis of large-area MoS 2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, no. 17, pp. 2320–2325, 2012.
[72] C.Jung et al., “Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector.,” Sci. Rep., vol. 5, p. 15313, 2015.
[73] X.Wang et al., “Chemical vapor deposition growth of crystalline monolayer MoSe2,” ACS Nano, vol. 8, no. 5, pp. 5125–5131, 2014.
[74] K. M.McCreary, A. T.Hanbicki, G. G.Jernigan, J. C.Culbertson, andB. T.Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Rep., vol. 6, no. August 2015, p. 19159, 2016.
[75] Y.Zhang et al., “Controlled Growth of High-Quality Monolayer WS 2 Layers on Sapphire,” ACS Nano, vol. 7, no. 10, pp. 8963–8971, 2013.
[76] K.Xu, Z.Wang, X.Du, M.Safdar, C.Jiang, andJ.He, “Atomic-layer triangular WSe 2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology, vol. 24, no. 46, p. 465705, Nov.2013.
[77] Q.Feng et al., “Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys,” Adv. Mater., vol. 26, no. 17, pp. 2648–2653, 2014.
[78] H.Li et al., “Growth of alloy MoS2xSe2(1-x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc., vol. 136, no. 10, pp. 3756–3759, 2014.
[79] J.Xie et al., “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater., vol. 25, no. 40, pp. 5807–5813, 2013.
[80] J.Xie et al., “Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution,” J. Am. Chem. Soc., vol. 135, no. 47, pp. 17881–17888, 2013.
[81] X.Yang, F.Yang, M.Xue, X.Zhang, andG.Luo, “Hydrothermal synthesis and tribological properties of MoSe2 nanoflowers,” Micro & Nano Lett., vol. 10, no. 7, pp. 339–342, 2015.
[82] H.Tang, K.Dou, C.Kaun, Q.Kuang, andS.Yang, “MoSe nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies,” Mater. Chem. A, vol. 2, pp. 360–364, 2014.
[83] S.Ratha andC. S.Rout, “Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method,” ACS Appl. Mater. Interfaces, vol. 5, no. 21, pp. 11427–11433, 2013.
[84] W.Li et al., “Synthesis and tribological properties of Mo-doped WSe 2 Nanolamellars,” Cryst. Res. Technol., vol. 47, no. 8, pp. 876–881, 2012.
[85] M.Bouroushian, Electrochemistry of Metal Chalcogenides. 2010.
[86] G. A.Somorjai andJ. Y.Park, “Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity,” Top. Catal., vol. 49, no. 3–4, pp. 126–135, 2008.
[87] S. G.Kwon andT.Hyeon, “Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods,” Small, vol. 7, no. 19, pp. 2685–2702, 2011.
[88] D.V.Talapin, J.-S.Lee, M.V.Kovalenko, andE.V.Shevchenko, “Prospects of Colloidal Nanocsrystals for Electronic and Optoelectronic Applications,” Chem. Rev., vol. 110, pp. 389–458, 2010.
[89] J.VanEmbden, A. S. R.Chesman, andJ. J.Jasieniak, “The heat-up synthesis of colloidal nanocrystals,” Chem. Mater., vol. 27, no. 7, pp. 2246–2285, 2015.
[90] M.Nasilowski, B.Mahler, E.Lhuillier, S.Ithurria, andB.Dubertret, “Two-Dimensional Colloidal Nanocrystals,” Chem. Rev., vol. 116, no. 18, pp. 10934–10982, 2016.
[91] X.Li, A.Tang, J.Li, L.Guan, G.Dong, andF.Teng, “Heating-up Synthesis of MoS2 Nanosheets and Their Electrical Bistability Performance,” Nanoscale Res. Lett., vol. 11, no. 1, p. 171, 2016.
[92] D.Sun, S.Feng, M.Terrones, andR. E.Schaak, “Formation and interlayer decoupling of colloidal MoSe<inf>2</inf> nanoflowers,” Chem. Mater., vol. 27, no. 8, pp. 3167–3175, 2015.
[93] X.Zhou et al., “Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe 2−x nanosheets for high-performance hydrogen evolution,” Nanoscale, vol. 6, no. 19, pp. 11046–11051, Aug.2014.
[94] B.Mahler, V.Hoepfner, K.Liao, andG. A.Ozin, “Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution,” J. Am. Chem. Soc., vol. 136, no. 40, pp. 14121–14127, 2014.
[95] W.Jung et al., “Colloidal Synthesis of Single-Layer MSe2 (M = Mo, W) Nanosheets via Anisotropic Solution-Phase Growth Approach,” J. Am. Chem. Soc., vol. 137, no. 23, pp. 7266–7269, 2015.
[96] P. D.Antunez, D. H.Webber, andR. L.Brutchey, “Solution-Phase Synthesis of Highly Conductive Tungsten Diselenide Nanosheets,” pp. 2–7, 2013.
[97] D.Yoo, M.Kim, S.Jeong, J.Han, andJ.Cheon, “Chemical synthetic strategy for single-layer transition-metal chalcogenides,” J. Am. Chem. Soc., vol. 136, no. 42, pp. 14670–14673, 2014.
[98] C. D.Layered, “Well-De fi ned Colloidal 2 ‑ D Layered Transition-Metal Chalcogenide Nanocrystals via Generalized Synthetic Protocols,” pp. 1–4, 2012.
[99] S. H.Lee, Y. J.Kim, andJ.Park, “Shape evolution of ZnTe nanocrystals: Nanoflowers, nanodots, and nanorods,” Chem. Mater., vol. 19, no. 19, pp. 4670–4675, 2007.
[100]C.Tan andH.Zhang, “Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials,” Nat. Commun., vol. 6, p. 7873, 2015.
[101]W.Ren, Z.Ai, F.Jia, L.Zhang, X.Fan, andZ.Zou, “Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2,” Appl. Catal. B Environ., vol. 69, no. 3–4, pp. 138–144, 2007.
[102]X.Xue et al., “Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires,” Nano Energy, vol. 13, pp. 414–422, 2015.
[103]T. and H. K.Hahn, Crystallographic and noncrystallographic point groups, in International Tables for Crystallography Volume A: Space-group symmetry, T. Hahn, Editor. 2002.
[104]M. M.Alyörük, Y.Aierken, D.Çaklr, F. M.Peeters, andC.Sevik, “Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides,” J. Phys. Chem. C, vol. 119, no. 40, pp. 23231–23237, 2015.
[105]J. A.CHAMPION, “Some properties of (Mo, W) (Se, Te)2,” BRIT. J. APPL. PHYS, vol. 16, pp. 1035–1037, 1965.
[106]L. H.Brixner, “Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten,” J. Inorg. Nucl. Chem., vol. 24, no. 3, pp. 257–263, 1962.
[107]A.Kumara andP. K.Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors,” Eur. Phys. J. B, vol. 85, no. 6, pp. 18–22, 2012.
[108]N.Lu et al., “Atomic and Electronic Structures of WTe2 Probed by High Resolution Electron Microscopy and ab Initio Calculations,” J. Phys. Chem. C, vol. 120, no. 15, pp. 8364–8369, 2016.
[109]H.Lv, W.Lu, D.Shao, andY.Liu, “Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: From bulk to monolayer,” arXiv Prepr. arXiv …, vol. 37004, pp. 2–5, 2014.
[110]S.Kabashima, “Electrical Properties of Tungsten-Ditelluride WTe2,” Journal of the Physical Society of Japan, vol. 21, no. 5. pp. 945–948, 1966.
[111]A.Ubaldini andJ.Jacimovic, “Chloride-Driven Chemical Vapor Transport Method for Crystal Growth of Transition Metal Dichalcogenides,” Cryst. Growth Des., vol. 13, no. 10, pp. 4453–4459, 2013.
[112]L.Liang andV.Meunier, “First-principles Raman spectra of MoS2, WS2 and their heterostructures,” Nanoscale, vol. 6, no. 10, p. 5394, 2014.
[113]Y. C.Jiang, J.Gao, andL.Wang, “Raman Fingerprint of Semi-metal WTe 2 from Bbulk to Monolayer,” Sci. Rep., pp. 1–19, 2016.
[114]Q.Song et al., “The In-Plane Anisotropy of WTe2 Investigated by Angle-Dependent and Polarized Raman Spectroscopy,” Sci. Rep., vol. 6, p. 29254, 2016.
[115]T. A. J.Loh andD. H. C.Chua, “Origin of Hybrid 1T- and 2H-WS2 Ultrathin Layers by Pulsed Laser Deposition,” J. Phys. Chem. C, vol. 119, no. 49, pp. 27496–27504, 2015.
[116]A.Ambrosi, Z.Sofer, andM.Pumera, “2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition.,” Chem. Commun. (Camb)., vol. 51, no. 40, pp. 8450–3, 2015.
[117]T. S.Sun, “Oxide and interface properties of anodic films on Hg1−xCdxTe,” J. Vac. Sci. Technol., vol. 17, no. 5, p. 1067, 1980.
[118]F.Ye, J.Lee, J.Hu, Z.Mao, J.Wei, andP. X.-L.Feng, “Environmental Instability and Degradation of Single- and Few-Layer WTe 2 Nanosheets in Ambient Conditions,” Small, no. 42, pp. 5802–5808, 2016.
[119]S.-H.Chang et al., “Synthesis of Cu/ZnO core/shell nanocomposites and their use as efficient photocatalysts,” CrystEngComm, vol. 18, no. 4, pp. 616–621, 2016.