簡易檢索 / 詳目顯示

研究生: 何名元
He, Ming-Yuan
論文名稱: 二維反鐵磁絕緣體NiPS3中的閘極可調光致發光
Gate-tunable photoluminescence in 2D antiferromagnetic insulator NiPS3
指導教授: 劉昌樺
Liu, Chang-Hua
口試委員: 張祐嘉
Chang, You-Chia
陳國平
Chen, Kuo-Ping
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 46
中文關鍵詞: 二維材料反鐵磁光致發光電荷轉移型絕緣體
外文關鍵詞: 2-D materials, antiferromagnetism, photoluminescence, charge transfer insulator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反鐵磁材料具備太赫茲共振、高儲存密度以及無雜散場的特性,讓該材料在記憶體的應用上極具潛力,但是反鐵磁靜磁矩為零的特性,使得反鐵磁的磁序和自旋不易被量測。二維反鐵磁材料NiPS3最近引起了極大的關注,這是因為NiPS3表現出強烈的磁性-激子偶合,進而導致超尖銳的線性偏振光致發光(PL),因此NiPS3的對稱破缺磁序可以用光學技術探測。
    在本論文中,我們的目的是了解改變摻雜是否會影響NiPS3的反鐵磁特性。為此,我們製造了NiPS3場效電晶體。電傳輸測量表明NiPS3是n型摻雜,並且通過掃描閘極電壓能有效地調整材料的費米能階。在此基礎上,我們進一步研究了 NiPS3 PL的強度和線性二向色性與施加閘極電壓之間的關係。結果清楚地揭示了當NiPS3調整為n摻雜時,其PL強度會降低而線性偏振度則會增加,這些表明了對二維反鐵磁性進行電控制的可能性。


    The 2D antiferromagnetic material NiPS3 has recently attracted great attentions. This is because NiPS3 exhibits strong magnetic-excitons coupling, which leads to ultra-sharp linearly polarized photoluminescence (PL). The symmetry breaking magnetic order of NiPS3 can be probed by using the optical technique.
    In this thesis, our aim is to understand whether varying the doping of NiPS3 would affect its antiferromagnetic properties. To achieve this, we fabricate a NiPS3 field effect transistor. Our electrical transport measurement indicates that NiPS3 is N-doped and its Fermi level can be effectively tuned by sweeping the gate voltages. Built on this foundation, we further investigate the PL intensity and linear dichroism of NiPS3 as a function of applied gate voltages. Our results clearly unveil that when tuning NiPS3 into N-doped, its PL intensity (degree of linear polarization) would decrease (increase). These suggest the possibility of electric control of the 2D antiferromagnetism.

    誌謝 I 摘要 II Abstract III 第一章 緒論 1 1.1二維材料潛力與物理特性 1 1.2二維磁性材料磁 -光偶合 效應 6 1.3研究動機 9 第二章 文獻探討 10 2.1 NiPS3晶格結構 10 2.2 NiPS3強光 -物質偶合特性 11 2.3自旋翻轉誘導線 性極化激子 13 2.4 NiPS3超窄線寬高各向異性自旋相關激子 14 2.5光致發光溫度與厚度依賴 16 2.6發射光子的磁性操縱 18 第三章 材料光電特性量測 20 3.1元件製備 20 3.1.1基板清潔與製備 21 3.1.2機械剝離法製備二維材料 21 3.1.3金屬電極 23 3.1.4材料選擇與元件設計材料選擇與元件設計 23 3.1.5乾式轉移法乾式轉移法 25 3.1.6元件成品元件成品 27 3.2閘極響應電性量測閘極響應電性量測 28 3.3光致發光頻譜量測光致發光頻譜量測 29 第四章 元件量測結果元件量測結果 31 4.1元件元件電傳輸特性電傳輸特性 31 4.2 NiPS3 閘極可調光致發光閘極可調光致發光 32 4.2.1閘極調變閘極調變PL 32 4.2.2閘極調變閘極調變Polarization-resolved PL 35 4.2.3不同激發能量閘極調變不同激發能量閘極調變PL 37 4.2.4閘極調變溫度依賴性閘極調變溫度依賴性 39 第五章 結論與未來工作結論與未來工作 40 參考文獻 44

    [1] Xui, K. et al. Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors. Nano Lett,17,1065−1070(2017).
    [2] Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature. 603, 259–264 (2022).
    [3] Kin Fai Mak & Jie Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics. 10, 216–226 (2016).
    [4] Mak, K, F. et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor. PRL. 105, 136805 (2010).
    [5] Chernikov, A. et al. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. PRL. 113, 076802 (2014).
    [6] Mak, K, F. et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology. 7, 494–498 (2012).
    [7] Xu, X. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics volume. 10, 343–350 (2014).
    [8] Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nature Physics. 12, 144–149 (2016).
    [9] Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nature Physics. 12, 139–143 (2016).
    [10] Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology. 10, 270–276 (2015).
    [11] Matsuoka, T. et al. Pressure-Induced Insulator–Metal Transition in Two-Dimensional Mott Insulator NiPS3. J. Phys. Soc. 90, 124706 (2021).
    [12] Qian, X. et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science. 346, 1344–1347 (2014).
    [13] Fei, Z. et al. Edge conduction in monolayer WTe2. Nature Physics. 13, 677–682 (2017).
    [14] Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetic in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).
    [15] Gong, C .et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature volume. 546,265–269 (2017).
    [16] Wang, X. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 031009 (2016).
    [17] Tian, Y. et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).
    [18] Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 546, 270–273 (2017). Nature Nanotechnology. 13, 544–548 (2018).
    [19] Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nature Nanotechnology. 13, 544–548 (2018).
    [20] Li, J, X. et al. Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nature Nanotechnology. 17, pages721–728 (2022).
    [21] Shikin, A, M. et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4. Scientific Reports. 10, 13226 (2020).
    [22] Seyler, K, L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nature Physics. 14, 277–281 (2018).
    [23] Kuo, C, T. et al. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals. Scientific Reports. 6, 20904 (2016).
    [24] Lee, J, U. et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Lett. 16, 12, 7433–7438(2016).
    [25] Lee, A. et al. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. APL Materials. 4, 086108 (2016).
    [26] Kim, Y, S. et al. Charge-Spin Correlation in van der Waals Antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).
    [27] Lane, C. et al Thickness dependence of electronic structure and optical properties of a correlated van der Waals antiferromagnetic NiPS3 thin film. Phys. Rev. B102, 075124, (2020).
    [28] Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nature Nanotechnology. 16, 655–660 (2021).
    [29] Ergecen, Emre. et al. Magnetically brightened dark electron-phonon bound states in a van der Waals antiferromagnet. Nature Communications. 13, 98 (2022).
    [30] Wang, Z. et al. Electronic Raman scattering in the 2D antiferromagnet NiPS3. Sci Adv. 8, 2 (2022).
    [31] Afanasiev, D. et al. Controlling the anisotropy of a van der Waals antiferromagnet with light. Sci Adv. 7, 23 (2021).
    [32] Belvin, C, A. et al. Exciton-driven antiferromagnetic metal in a correlated van der Waals insulator. Nature Communications. 12, 4837 (2021).
    [33] Li, Y. et al. Topological superconductivity in Ni-based transition metal trichalcogenides. Phys. Rev. B 100, 214513 (2019).
    [34] Lancon, D. et al. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 98, 134414 (2018).
    [35] Wildes, A, R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).
    [36] Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).
    [37] Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).
    [38] Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nature Communications. 10, 345 (2019).
    [39] Ho, C, H. et al. The band-edge excitons observed in few-layer NiPS3. npj 2D Materials and Applications. 5, 8 (2021).
    [40] Kang, S. et al.Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature volume. 583, 785–789 (2020).
    [41] Dirnberger, F. et al. Spin-correlated exciton–polaritons in a van der Waals magnet. Nature Nanotechnology. 17, 1060–1064, (2022).
    [42] Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nature Materials. 20, 964–970 (2021).
    [43] Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nature Communications. 7,13017 (2016).
    [44] Peng, H. et al. Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation. Sci Rep. 2, 442. (2012).
    [45] Wang, F. et al. Defect-mediated ferromagnetism in correlated two-dimensional transition metal phosphorus trisulfides. Science advances. 7, 43. (2021).
    [46] Yan, M. et al. Correlations in the Electronic Structure of van der Waals NiPS3 Crystals: An X-ray Absorption and Resonant Photoelectron Spectroscopy Study. J. Phys. Chem. Lett. 12, 2400−2405. (2021)
    [47] Jenjeti R. et al Field Effect Transistor Based on Layered NiPS3. Scientific Reports, 8586 (2018).
    [48] Zhang, Y, J. et al. Electrically Switchable Chiral Light-Emitting Transistor. Science. 344, (2014).
    [49] Chu, C, H. End-Bonded Metal Contacts on WSe2 Field Effect Transistors. ACS Nano. 13, 8146-8154(2019).
    [50] Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. NA T U RE. 94, 563 (2018).

    QR CODE