簡易檢索 / 詳目顯示

研究生: 王珮瑜
Wang, Pei-Yu
論文名稱: 建構高中自然科學自主學習之網路資源推薦系統
Construct an online learning resource recommendation system for high school natural sciences SDL
指導教授: 區國良
Ou, Kuo-Liang
唐文華
Tarng, Wern-Huar
口試委員: 林秋斌
Lin, Chiu-Pin
陳鏗任
Chen, Ken-Zen
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 學習科學與科技研究所
Institute of Learning Sciences and Technologies
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 自主學習文字探勘推薦系統看板系統
外文關鍵詞: Self-directed Learning, Text mining, Recommendation System, Kanban System
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 教育部於108年公佈十二年國民基本教育課程綱,其中對於學生的自主學習有了全新的設計,期望學生能自行規劃學習目標、搜尋學習資源,而且更注重學生在學習過程中的狀態以及與同儕之間的交互關係。由於自主學習時往往需要融合跨領域的知識,很可能超出教師的能力範圍,所幸網路上的相關資源廣泛,可供參考,但使用搜尋引擎時可能因為查詢的結果相關性不足,或引用了不當資訊反而造成學習迷失;為使自主學習活動能順利進行,極需要具備權威性且有效的學習資源作為輔助支持。
    本論文為此建立網路資源推薦系統,利用經專家篩選過之34191篇網路科普文章進行文字探勘建立字詞間的關聯矩陣,以輔助高中師生進行自主學習活動時搜尋相關的學習資源使用。推薦系統以雲端看板(Kanban)為使用者界面,支持學生進行自主學習時的資料蒐集及探索過程,預期能使學生更加方便理解自然科學理論與相關概念。研究分析以中學教師為對象蒐集問卷,包含正確性、相關性、總體表現與滿意度,分析結果發現系統對於學習者思維發散有所幫助。除教師問卷外也將搜尋結果與常用搜尋引擎相比,結果發現本論文提供之推薦系統之搜尋結果範圍較一般搜尋引擎的搜尋結果更加廣泛,並可有效提供連結相關知識之關鍵字,同時也發現推薦系統訓練集的數量會顯著影響查詢結果,建議未來發展以文字探勘為基礎之學習資源推薦系統相關研究可增加訓練文本或以演算法進行細部分類,以提高系統搜尋精確度與關聯度。


    A brand new self-directed learning (SDL) course was designed by MOE in 2018 for high-school students, which expects students to plan their own learning goals, search for learning resources, and pay more attention to the learning process, meanwhile, interacting with peers. Since SDL needs to integrate cross-disciplinary knowledge, it is likely beyond the teacher's ability. Fortunately, there are many resources on the Internet that support SDL. However, these resources may be of low relevance or misinformation when using general search engines that students rely on.
    This thesis establishes an online learning resource recommendation system, using 34,191 popular science articles screened by experts to develop an association matrix between words through text mining to assist high school teachers and students search for relevant learning resources. The recommendation system uses Kanban as the user interface to support the process of data collection and exploration. Students are expected to understand natural science theories and related concepts more quickly. The analysis of questionnaires from middle school teachers indicates that the system is helpful for learners to diverge. The results also show that the learning resources suggested by the system are more extensive than general search engines did. Future research is recommended to expand the training set or use different algorithms to improve the accuracy and relevance of learning resources for SDL.

    致謝…………………………………………………………………………………………………………………………………………………i 摘要…………………………………………………………………………………………………………………………………………………ii Abstract……………………………………………………………………………………………………………………………………iii 目錄…………………………………………………………………………………………………………………………………………………iv 圖目次……………………………………………………………………………………………………………………………………………vii 表目次……………………………………………………………………………………………………………………………………………x 壹、 緒論……………………………………………………………………………………………………………………………………1 1.1 研究背景與動機………………………………………………………………………………………………………………1 1.2 研究目的與限制………………………………………………………………………………………………………………2 1.2.1 研究目的…………………………………………………………………………………………………………………………2 1.2.2 研究範圍與限制…………………………………………………………………………………………………………4 1.3 名詞釋義………………………………………………………………………………………………………………………………4 貳、 文獻探討………………………………………………………………………………………………………………………………6 2.1 自主學習………………………………………………………………………………………………………………………………6 2.2 推薦系統………………………………………………………………………………………………………………………………9 2.3 文字探勘………………………………………………………………………………………………………………………………11 2.3.1 文字向量建立…………………………………………………………………………………………………………………12 2.3.2 文本特徵提取與分類…………………………………………………………………………………………………14 2.4 看板系統………………………………………………………………………………………………………………………………16 參、 研究方法……………………………………………………………………………………………………………………………19 3.1 研究流程………………………………………………………………………………………………………………………………19 3.2 研究對象………………………………………………………………………………………………………………………………19 3.3 研究工具………………………………………………………………………………………………………………………………20 3.3.1 斷詞工具…………………………………………………………………………………………………………………………20 3.3.2 Gensim……………………………………………………………………………………………………………………………21 肆、 推薦系統建立……………………………………………………………………………………………………………………23 4.1 資料來源………………………………………………………………………………………………………………………………23 4.2 文本前置處理………………………………………………………………………………………………………………………25 4.3 訓練與模型建立…………………………………………………………………………………………………………………26 4.4 看板系統………………………………………………………………………………………………………………………………28 4.5 Web API 轉換器………………………………………………………………………………………………………………33 4.6 系統整合與呈現…………………………………………………………………………………………………………………36 4.6.1 系統架構…………………………………………………………………………………………………………………………36 4.6.2 系統呈現…………………………………………………………………………………………………………………………38 伍、 研究發現與討論………………………………………………………………………………………………………………42 5.1 系統字元統計分析……………………………………………………………………………………………………………42 5.2 系統不適當回應與文本構成分析………………………………………………………………………………44 5.3 專家訪問與可行性分析…………………………………………………………………………………………………46 5.4 系統與一般搜尋引擎進行比較……………………………………………………………………………………48 陸、 結論與建議…………………………………………………………………………………………………………………………57 參考文獻…………………………………………………………………………………………………………………………………………60 附錄一 關聯相近字元排序示意圖………………………………………………………………………………67 附錄二 前三相關標題與文章內容節錄……………………………………………………………………69 附錄三 系統偵錯測試總字元…………………………………………………………………………………………70

    中文文獻
    明柳. (2012). 論高中生英語自主學習能力的培養. 科技信息(11), 294-294.
    林堂馨. (2018). 自主學習的五大發展趨勢. 教育研究月刊, 11(295), 126-145.
    胡卿, & 郭躍. (2019). 論思想政治理論課自主學習模式的非自主性. 集寧師范學院學報(05).
    許書銘, & 李卓勳. (2015). 大數據處理與使用行為分析之應用-電視節目推薦系統. 電工通訊季刊(2015第4季), 62-73.

    英文文獻
    Ahmad, M. O., Markkula, J., & Oivo, M. (2014). Kanban for software engineering teaching in a software factory learning environment. World Transactions on Engineering and Technology Education, 12(3), 338-343.
    Anderson, D. J. (2010). Kanban: successful evolutionary change for your technology business: Blue Hole Press.
    Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2015). Research-paper recommender systems: a literature survey. International Journal on Digital Libraries, 17(4), 305-338. doi:10.1007/s00799-015-0156-0
    Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132. doi:10.1016/j.knosys.2013.03.012
    Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., . . . Börner, K. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS One, 6(3), e18029.
    Capdevila, J., Arias, M., & Arratia, A. (2016). GeoSRS: A hybrid social recommender system for geolocated data. Information Systems, 57, 111-128.
    Cerezo, R., Sánchez-Santillán, M., Paule-Ruiz, M. P., & Núñez, J. C. (2016). Students' LMS interaction patterns and their relationship with achievement: A case study in higher education. Computers & Education, 96, 42-54. doi:10.1016/j.compedu.2016.02.006
    Chakkaravarthy, K., Ibrahim, N., Mahmud, M., Hardaker, G., & Ramasamy Venkatasalu, M. (2020). Determinants of readiness towards self-directed learning among nurses and midwives: Results from national survey. Nurse Education in Practice, 47, 102824. doi:doi.org/10.1016/j.nepr.2020.102824
    Chang, W.-L., & Benson, V. (2022). Jigsaw teaching method for collaboration on cloud platforms. Innovations in Education and Teaching International, 59(1), 24-36.
    Chen, C.-H., Chen, K.-Z., & Tsai, H.-F. (2021). Did Self-Directed Learning Curriculum Guidelines Change Taiwanese High-School Students’ Self-Directed Learning Readiness? The Asia-Pacific Education Researcher. doi:10.1007/s40299-021-00582-w
    Chen, N.-S., Kinshuk, Wei, C.-W., & Chen, H.-J. (2008). Mining e-Learning domain concept map from academic articles. Computers & Education, 50(3), 1009-1021. doi:10.1016/j.compedu.2006.10.001
    Church, K. W. (2016). Word2Vec. Natural Language Engineering, 23(1), 155-162. doi:10.1017/s1351324916000334
    Dara, S., Chowdary, C. R., & Kumar, C. (2020). A survey on group recommender systems. Journal of Intelligent Information Systems, 54(2), 271-295.
    De Medio, C., Limongelli, C., Sciarrone, F., & Temperini, M. (2020). MoodleREC: A recommendation system for creating courses using the moodle e-learning platform. Computers in Human Behavior, 104, 106168.
    de Melo, I. F., Jr., Mendes, G. A. R., & Gelmetti, S. A. (2019). Non-Scrum Implementation: A Methodological Approach for Small Companies. In (pp. 109-118,IX). Kidmore End: Academic Conferences International Limited.
    Eppler, M. J., & Mengis, J. (2004). The Concept of Information Overload: A Review of Literature from Organization Science, Accounting, Marketing, MIS, and Related Disciplines. The Information Society, 20(5), 325-344. doi:10.1080/01972240490507974
    Fawcett, L. M., & Garton, A. F. (2005). The effect of peer collaboration on children's problem‐solving ability. British journal of educational psychology, 75(2), 157-169.
    Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-37.
    Gandomkar, R., & Sandars, J. (2018). Clearing the confusion about self-directed learning and self-regulated learning. Medical teacher, 40(8), 862-863. doi:10.1080/0142159X.2018.1425382
    Gomez-Uribe, C. A., & Hunt, N. (2016). The Netflix Recommender System. ACM Transactions on Management Information Systems, 6(4), 1-19. doi:10.1145/2843948
    Gromovyi, M. V., Romanenko, V. I., Mieth, S., Halfmann, T., & Yatsenko, L. P. (2011). Storage and retrieval of coherent optical information in atomic populations. Optics Communications, 284(24), 5710-5718.
    Hursen, C. (2015). The impact of curriculum developed in line with authentic learning on the teacher candidates’ success, attitude and self-directed learning skills. Asia Pacific Education Review, 17(1), 73-86. doi:10.1007/s12564-015-9409-2
    Innocent, M., & Mundia, M. (2020). Project Management Application in Academic and Research Institutions in Zambia. The journal of research administration, 51(2), 114-139.
    Iwasiw, C. (1987). The role of the teacher in self-directed learning. Nurse education today, 7(5), 222-227.
    Jang, B., Kim, I., & Kim, J. W. (2019). Word2vec convolutional neural networks for classification of news articles and tweets. PLoS One, 14(8), e0220976. doi:10.1371/journal.pone.0220976
    Karakas, F., & Manisaligil, A. (2012). Reorienting self‐directed learning for the creative digital era. European Journal of Training and Development, 36(7), 712-731. doi:10.1108/03090591211255557
    Kidane, H. A.-O., Roebertsen, H., & van der Vleuten, C. P. M. (2020). Students' perceptions towards self-directed learning in Ethiopian medical schools with new innovative curriculum: a mixed-method study. (1472-6920 (Electronic)).
    Kim, D., Seo, D., Cho, S., & Kang, P. (2019). Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec. Information Sciences, 477, 15-29. doi:10.1016/j.ins.2018.10.006
    Kim, R., Olfman, L., Ryan, T., & Eryilmaz, E. (2014). Leveraging a personalized system to improve self-directed learning in online educational environments. Computers & Education, 70, 150-160. doi:10.1016/j.compedu.2013.08.006
    Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers.
    Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., & Zhou, T. (2016). Vital nodes identification in complex networks. Physics Reports, 650, 1-63.
    Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T. (2012). Recommender systems. Physics Reports, 519(1), 1-49.
    Laal, M., & Ghodsi, S. M. (2012). Benefits of collaborative learning. Procedia - Social and Behavioral Sciences, 31, 486-490. doi:10.1016/j.sbspro.2011.12.091
    Lage Junior, M., & Godinho Filho, M. (2010). Variations of the kanban system: Literature review and classification. International journal of production economics, 125(1), 13-21.
    Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. Paper presented at the International conference on machine learning.
    Lee, B. K., & Lee, W. N. (2004). The effect of information overload on consumer choice quality in an on‐line environment. Psychology & Marketing, 21(3), 159-183.
    Lee, H., Choi, K., Yoo, D., Suh, Y., Lee, S., & He, G. (2018). Recommending valuable ideas in an open innovation community. Industrial Management & Data Systems, 118(4), 683-699. doi:10.1108/imds-02-2017-0044
    Lemmetty, S., & Collin, K. (2020). Self‐Directed Learning in Creative Activity: An Ethnographic Study in Technology‐Based Work. The Journal of Creative Behavior, 55(1), 105-119. doi:10.1002/jocb.438
    Loyens, S. M., Magda, J., & Rikers, R. M. (2008). Self-Directed Learning in Problem-Based Learning and its Relationships with Self-Regulated Learning. Educational Psychology Review, 20(4), 411-427.
    Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12-32.
    Mikolov, T., Le, Q. V., & Sutskever, I. (2013). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168.
    Mohd Saiboon, I., Musni, N., Daud, N., Shamsuddin, N. S., Jaafar, M. J., Hamzah, F. A., & Abu Bakar, A. (2021). Effectiveness of Self-Directed Small-Group-Learning Against Self-Directed Individual-Learning Using Self-Instructional-Video in Performing Critical Emergency Procedures Among Medical Students in Malaysia: A Single-Blinded Randomized Controlled Study. Clinical Simulation in Nursing, 56, 46-56.
    Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning for text categorization. Paper presented at the Proceedings of the fifth ACM conference on Digital libraries.
    Nunes, I., & Jannach, D. (2017). A systematic review and taxonomy of explanations in decision support and recommender systems. User Modeling and User-Adapted Interaction, 27(3), 393-444.
    Oza, N., Fagerholm, F., & Münch, J. (2013). How does Kanban impact communication and collaboration in software engineering teams? Paper presented at the 2013 6th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).
    Parkinson, J., & Adendorff, R. (2004). The use of popular science articles in teaching scientific literacy. English for Specific Purposes, 23(4), 379-396. doi:10.1016/j.esp.2003.11.005
    Pintrich, P. R. (2000). Chapter 14 - The Role of Goal Orientation in Self-Regulated Learning. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation (pp. 451-502). San Diego: Academic Press.
    Przybylek, A., & Olszewski, M. K. (2016, 11-14 Sept. 2016). Adopting collaborative games into Open Kanban. Paper presented at the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS).
    Rismanto, R., Rachmad Syulistyo, A., & Citra Agusta, B. P. (2020). Research Supervisor Recommendation System Based on Topic Conformity. International Journal of Modern Education and Computer Science, 12(1), 26-34. doi:10.5815/ijmecs.2020.01.04
    Robertson, J. (2011). The educational affordances of blogs for self-directed learning. Computers & Education, 57(2), 1628-1644. doi:10.1016/j.compedu.2011.03.003
    Roetzel, P. G. (2018). Information overload in the information age: a review of the literature from business administration, business psychology, and related disciplines with a bibliometric approach and framework development. Business Research, 12(2), 479-522. doi:10.1007/s40685-018-0069-z
    Rogers, E. M. (1983). Diffusion of innovations (3rd ed. ed.). New York: Free Press.
    Sadiku, M., Shadare, A. E., Musa, S. M., Akujuobi, C. M., & Perry, R. (2016). Data visualization. International Journal of Engineering Research And Advanced Technology (IJERAT), 2(12), 11-16.
    Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Commun. ACM, 18(11), 613–620. doi:10.1145/361219.361220
    Saltz, J., & Heckman, R. (2020). Exploring Which Agile Principles Students Internalize When Using a Kanban Process Methodology. Journal of Information Systems Education, 31(1), 51-60.
    Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., & Elahi, M. (2018). Current challenges and visions in music recommender systems research. International Journal of Multimedia Information Retrieval, 7(2), 95-116. doi:10.1007/s13735-018-0154-2
    Shi, F., Chen, L., Han, J., & Childs, P. (2017). A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval. Journal of Mechanical Design, 139(11). doi:10.1115/1.4037649
    Shirazi, F., Sharif, F., Molazem, Z., & Etemaad, J. (2021). The characteristics that propel Iranian MS students of nursing into self-directed learning: A qualitative research. Journal of Professional Nursing, 37(4), 749-756.
    Shokeen, J., & Rana, C. (2019). Social recommender systems: techniques, domains, metrics, datasets and future scope. Journal of Intelligent Information Systems, 54(3), 633-667. doi:10.1007/s10844-019-00578-5
    Slavit, D., & Roth McDuffie, A. (2013). Self‐directed teacher learning in collaborative contexts. School Science and Mathematics, 113(2), 94-105.
    Struhl, S. (2015). Practical text analytics: Interpreting text and unstructured data for business intelligence: Kogan Page Publishers.
    Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Data mining introduction. People’s Posts and Telecommunications Publishing House, Beijing.
    Tintarev, N., & Masthoff, J. (2012). Evaluating the effectiveness of explanations for recommender systems. User Modeling and User-Adapted Interaction, 22(4), 399-439.
    Tortorella, G., Nascimento, D., Caiado, R., Posada, J. G. A., & Sawhney, R. (2019). How do different generations contribute to the development of a learning organization in companies undergoing a lean production implementation. The Learning Organization, 27, 101-115.
    Wilson, J. M. (2003). Gantt charts: A centenary appreciation. European Journal of Operational Research, 149(2), 430-437.
    Yeo, Z., Choong Low, J. S., Loong Tan, D. Z., Chung, S. Y., Tjandra, T. B., & Ignatius, J. (2019). A collaboration platform for enabling industrial symbiosis: Towards creating a self-learning waste-to-resource database for recommending industrial symbiosis transactions using text analytics. Procedia CIRP, 80, 643-648.
    Zhang, S., Yao, L., Sun, A., & Tay, Y. (2020). Deep Learning Based Recommender System. ACM Computing Surveys, 52(1), 1-38. doi:10.1145/3285029
    Zheng, S., Rosson, M. B., Shih, P., & Carroll, J. (2015). Designing MOOCs as Interactive Places for Collaborative Learning.

    QR CODE