研究生: |
林琦珉 |
---|---|
論文名稱: |
研究放射線照射後的腦組織對於腦瘤生長的影響 Brain Tumor Bed Effect |
指導教授: | 江啟勳 |
口試委員: |
洪志宏
張建文 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 腦瘤 、腫瘤床效應 、放射線預先照射 、腫瘤微環境 、神經膠質瘤 |
外文關鍵詞: | ALTS1C1, TBE, pre-irradiation, microenvironment, glioma |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
放射線治療幾乎為所有腦腫瘤的主要治療方式之一,但臨床上在放射線治療過後腦腫瘤復發的比例也相當高,且往往復發的腦腫瘤治癒率更低。儘管許多研究都將焦點放在如何增加腦腫瘤放射線治療的效果上,復發的腦腫瘤在放射線照射後的微環境變化卻仍然不清楚。我們利用小鼠星狀細胞瘤細胞株,ALTS1C1,生長在放射線預先照射(Pre-IR)的腦組織,模擬一個臨床上腦腫瘤復發的微環境模型,來研
究在放射線照射前後腦腫瘤細胞面對不同微環境變化時的行為反應。我們首先探討放射線照射對於ALTS1C1 腦腫瘤微環境的影響,結果發現腫瘤生長在Pre-IR 後的腦組織中會造成較低的腫瘤血管密度、較多的缺氧和壞死區域以及腫瘤相關巨噬細胞(TAMs)聚集於缺氧區域等被稱為是腫瘤床效應(Tumor Bed Effect; TBE)的情形。然而TBE是否造成腫瘤生長及致死速率的延遲,還受到其它許多像是Pre-IR劑量、基質細胞衍生因子-1(SDF-1)或是組織的種類等因素的調控。例如當我們使用腫瘤血管密度、缺氧或壞死區域作為TBE的指標時,在Pre-IR 劑量為8~15 Gy 時依劑量提升會產生較高程度的TBE,但腫瘤生長延遲的情形只在Pre-IR 劑量為15 Gy 時會發生。然而當ALTS1C1 腫瘤細胞的SDF-1 表現受到siRNA 方式所抑制時,腫瘤在15 Gy 的Pre-IR 環境中生長延遲的情形就會消失。此現象指出復發腦腫瘤的生長速率會受到腫瘤細胞與其微環境之間的交互作用所調控,
進一步釐清這些機制將有助於我們了解在放射線治療後復發的腦腫瘤,並開發更有效的復發腫瘤治療方式。
Radiotherapy (RT) is a major strategy for treating brain tumors, but the relative high percentage of recurrent brain tumors after RT is frequently reported clinically and is associated with a lower cure rate. Despite many studies focus on the methods to improve the efficacy of RT for brain tumor, the alteration of the microenvironments in recurrent brain tumor after RT is still not clear. To investigate the behaviors of recurrent brain tumors after RT, we used a murine astrocytoma, ALTS1C1, growing from pre-irradiated (pre-IR) brain tissues as a pre-clinical brain tumor recurrent model. Using this model, we found that tumors grown from pre-IR brain tissues have lower microvascular density (MVD), more hypoxic and necrotic regions, and the aggregation of tumor-associated macrophages (TAMs) in hypoxic regions, which is generally called tumor bed effect (TBE). However, whether TBE would result in tumor growth delay still depends on many other factors, such as pre-IR dose, the expression of stromal-cell-derived factor-1 (SDF-1), or type of tissues. For example, using MVD, hypoxia, or necrosis as the readout for TBE, a good pre-IR dose response could be found between 8 ~ 15 Gy, but tumor growth delay was only found in 15 Gy pre-IR group. When the expression of SDF-1 by ALTS1C1 cells was suppressed by siRNA approach, the tumor growth delay in 15 Gy pre-IR group disappeared. This indicates that the growth rate of recurrent brain tumor is the result of the interplay between tumor cells and irradiated tumor microenvironments. To understand the mechanisms behind them will
1.Raizer, J.J. HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. J Neurooncol 74, 77-86 (2005).
2.Wessels, P.H., et al. Supratentorial grade II astrocytoma: biological features and clinical course. Lancet Neurol 2, 395-403 (2003).
3.Herfarth, K.K., Gutwein, S. & Debus, J. Postoperative radiotherapy of astrocytomas. Semin Surg Oncol 20, 13-23 (2001).
4.Brandes, A.A., et al. Glioblastoma in adults. Crit Rev Oncol Hematol 67, 139-152 (2008).
5.Fine, H.A. The basis for current treatment recommendations for malignant gliomas. J Neurooncol 20, 111-120 (1994).
6.Garden, A.S., et al. Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas. Radiother Oncol 20, 99-110 (1991).
7.Dell'Albani, P. Stem cell markers in gliomas. Neurochem Res 33, 2407-2415 (2008).
8.Dvorak, H.F., Weaver, V.M., Tlsty, T.D. & Bergers, G. Tumor microenvironment and progression. J Surg Oncol 103, 468-474 (2011).
9.Hede, K. Environmental protection: studies highlight importance of tumor microenvironment. J Natl Cancer Inst 96, 1120-1121 (2004).
10.Sung, S.Y. & Chung, L.W. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 70, 506-521 (2002).
11.Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705-713 (2008).
12.Minchinton, A.I. & Tannock, I.F. Drug penetration in solid tumours. Nat Rev Cancer 6, 583-592 (2006).
13.Cassavaugh, J. & Lounsbury, K.M. Hypoxia-mediated biological control. J Cell Biochem 112, 735-744 (2011).
14.Semenza, G.L. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 5, 405-406 (2004).
15.Folkman, J. & Shing, Y. Angiogenesis. J Biol Chem 267, 10931-10934 (1992).
16.Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249-257 (2000).
17.Nussenbaum, F. & Herman, I.M. Tumor angiogenesis: insights and innovations. J Oncol 2010, 132641 (2010).
18.Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6, 389-395 (2000).
19.Chekenya, M. & Pilkington, G.J. NG2 precursor cells in neoplasia: functional, histogenesis and therapeutic implications for malignant brain tumours. J Neurocytol 31, 507-521 (2002).
20.Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314, 15-23 (2003).
21.Ferrone, S. & Whiteside, T.L. Tumor microenvironment and immune escape. Surg Oncol Clin N Am 16, 755-774, viii (2007).
22.Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4, 11-22 (2004).
23.Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549-555 (2002).
24.Lunt, S.J., Chaudary, N. & Hill, R.P. The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26, 19-34 (2009).
25.Okada, M., et al. Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol 34, 1621-1627 (2009).
26.Lewis, C.E. & Pollard, J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605-612 (2006).
27.Balkwill, F. Chemokine biology in cancer. Semin Immunol 15, 49-55 (2003).
28.Dewan, M.Z., et al. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother 60, 273-276 (2006).
29.Petit, I., Jin, D. & Rafii, S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28, 299-307 (2007).
30.Luker, K.E. & Luker, G.D. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 238, 30-41 (2006).
31.Zheng, H., Fu, G., Dai, T. & Huang, H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol 50, 274-280 (2007).
32.Tabatabai, G., Frank, B., Mohle, R., Weller, M. & Wick, W. Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-beta-dependent HIF-1alpha-mediated induction of CXCL12. Brain 129, 2426-2435 (2006).
33.Kozin, S.V., et al. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res 70, 5679-5685 (2010).
34.Wild-Bode, C., Weller, M., Rimner, A., Dichgans, J. & Wick, W. Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61, 2744-2750 (2001).
35.Tsai, J.H., et al. Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol Ther 4, 1395-1400 (2005).
36.McBride, W.H., et al. A sense of danger from radiation. Radiat Res 162, 1-19 (2004).
37.Chen, F.H., et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res 15, 1721-1729 (2009).
38.Klopp, A.H., et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67, 11687-11695 (2007).
39.Barcellos-Hoff, M.H., Park, C. & Wright, E.G. Radiation and the microenvironment - tumorigenesis and therapy. Nat Rev Cancer 5, 867-875 (2005).
40.Hunter, A., Hendrikse, A., Renan, M. & Abratt, R. Does the tumor microenvironment influence radiation-induced apoptosis? Apoptosis 11, 1727-1735 (2006).
41.Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175, 409-416 (1972).
42.Ahmad, M., Khurana, N.R. & Jaberi, J.E. Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc Res 73, 14-19 (2007).
43.Tsai, C.S., et al. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys 68, 499-507 (2007).
44.Heissig, B., et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med 202, 739-750 (2005).
45.Kioi, M., et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120, 694-705 (2010).
46.Souhami, L., et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys 60, 853-860 (2004).
47.Liang, B.C., Thornton, A.F., Jr., Sandler, H.M. & Greenberg, H.S. Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg 75, 559-563 (1991).
48.Garcia-Barros, M., et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155-1159 (2003).
49.Ceradini, D.J., et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10, 858-864 (2004).
50.Ogawa, K., et al. Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res 67, 4016-4021 (2007).
51.Ahn, G.O. & Brown, J.M. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13, 193-205 (2008).
52.Milas, L., Ito, H., Hunter, N., Jones, S. & Peters, L.J. Retardation of tumor growth in mice caused by radiation-induced injury of tumor bed stroma: dependency on tumor type. Cancer Res 46, 723-727 (1986).
53.Milas, L., Hirata, H., Hunter, N. & Peters, L.J. Effect of radiation-induced injury of tumor bed stroma on metastatic spread of murine sarcomas and carcinomas. Cancer Res 48, 2116-2120 (1988).
54.Jirtle, R., Rankin, J.H. & Clifton, K.H. Effect of x-irradiation of tumour bed on tumour blood flow and vascular response to drugs. Br J Cancer 37, 1033-1038 (1978).
55.Milas, L. Tumor bed effect in murine tumors: relationship to tumor take and tumor macrophage content. Radiat Res 123, 232-236 (1990).
56.Chen, F.H., et al. Vasculatures in Tumors Growing from Preirradiated Tissues: Formed by Vasculogenesis and Resistant to Radiation and Antiangiogenic Therapy. Int J Radiat Oncol Biol Phys (2011).
57.Chiang, C.S., McBride, W.H. & Withers, H.R. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol 29, 60-68 (1993).
58.Hwang, S.Y., et al. Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis 21, 457-467 (2006).
59.Jin, D.K., et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12, 557-567 (2006).
60.Greenfield, J.P., Cobb, W.S. & Lyden, D. Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas. J Clin Invest 120, 663-667 (2010).
61.Lerman, O.Z., et al. Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood 116, 3669-3676 (2010).
62.Du, R., et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206-220 (2008).
63.Fang, H.Y., et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114, 844-859 (2009).
64.Bergers, G. & Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7, 452-464 (2005).
65.Chekenya, M., et al. The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathol Appl Neurobiol 28, 367-380 (2002).