簡易檢索 / 詳目顯示

研究生: 柯宗杰
Ko, Zong-Jie
論文名稱: 以分子束磊晶在Si基板上成長核殼結構之砷化鎵奈米線及其電性分析
Growth and electrical properties of GaAs core-shell nanowires on Si substrates by molecular beam epitaxy
指導教授: 黃金花
Huang, Jin-Hua
口試委員: 張翼
李薇妮
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 奈米線砷化鎵矽基板
外文關鍵詞: nanowire, GaAs, Si substrate, gold
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前為止, GaAs 奈米線可以成功成長在 GaAs 基板上,但是成長在Si 基板上並不常見,憑藉著先進的製造技術,在 Si 基板上成長砷化鎵奈米線可結合光與電潛在的價值而且可以降低製備成本。
    因此本研究利用分子束磊晶系統在 n-type (1-1-1) Si 基板以金薄膜當催化劑藉由 VLS 機制成長砷化鎵奈米線,藉由掃瞄式電子顯微鏡、穿透式電子顯微鏡、 X 光繞射與拉曼光譜分析奈米線表面形貌、 結晶方向與結構。本實驗中發現以 V/III 比為 25 與成長溫度為 540 °C在 Si 基板上成長得到幾乎無缺陷的奈米線且結構為 Zinc-blende。
    得到一個幾乎無缺陷的GaAs奈米線結構,更進一步,將溫度降至 415 °C以下時 Au-Ga 液滴幾乎固化導致奈米線徑向生長速率遠快於軸向成長速率,再藉由Ga與As束流控制可以成功的組件出具備核殼(core-shell)結構的砷化鎵奈米線。
    為了瞭解 GaAs 奈米線的電子特性,將 Si 或是 Be 原子分別摻雜到奈米線中,本實驗發現 Si分子源在1300 °C及Be分子源在1100 °C奈米線摻雜濃度最高。


    Growth of GaAs nanowires (NWs) on Si substrates has potential applications in novel photovoltaic devices and optoelectronic integrated circuits with low cost. Over the past several years, the synthesis of GaAs NWs on Si has predominantly been investigated by using metal organic vapor phase epitaxy via the Au-catalyzed vapour-liquid-solid (VLS) mechanism. Much fewer studies have employed the molecular beam epitaxy (MBE) technique. In this study, we present a systematic study on the MBE growth of high quality GaAs NWs on Si (111) substrates by Au-assisted VLS method.
    The morphology and crystal structure of GaAs NWs were investigated as a function of the substrate temperature, growth time, and V/III flux ratio during MBE growth, as well as the Au film thickness, using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. We found that the nanowires grown with a As/Ga flux ratio of 25 at 540 °C exhibit a defect-free Zinc blende structure.
    Furthermore, we demonstrated the growth of defect-free GaAs core-shell nanowires with uniform diameter. The GaAs core was first grown at 540 °C with a As/Ga flux ratio of 25, followed by the GaAs shell grown at 400 °C using a lower As/Ga flux ratio of 8.33. Finally, we investigated the incorporation of Si and Be in nanowires, which lead to n-type and p-type GaAs NWs, respectively.

    第一章緒論................................... 2 1-1前言..................................... 2 1-2 研究動機................................. 5 1-3 研究目的與論文架構......................... 5 第二章 文獻回顧.............................. 6 2-1 奈米科技與材料............................ 6 2-1-1 零維奈米材料............................ 8 2-1-2 一維奈米結構............................ 8 2-1-3 二維奈米材料........................... 10 2-2砷化鎵(GaAs)............................. 10 2-3 奈米線生長機制............................ 17 2-3-1 氣-液-固機制(Vapor-Liquid-Solid, VLS).. 17 2-3-2 氣-液機制(vapor-liquid, VL)............ 20 2-3-3氧化物輔助生長(Oxide-Assisted Growth, OAG)... 21 2-3-4液-液-固生長機制(Solution-Liquid-Solid, SLS)..22 2-3-5 模版法(Template-based method)........... 23 2-4 以MBE系統成長GaAs奈米線..................... 26 2-5 GaAs奈米線磊晶方向.......................... 30 2-7 GaAs 奈米線結構............................ 33 2-8 GaAs奈米線電子特性.......................... 35 2-9 GaAs 奈米線成長與Core-Shell 結構............. 36 第三章 儀器介紹與實驗步驟......................... 37 3-1 分子束磊晶 (Molecular Beam Epitaxy, MBE) 簡介... 37 3-1-1 基本介紹 .................................. 37 3-1-2 本實驗室分子束磊晶系統...................... 39 3-1-3磊晶原理................................... 42 3-2 電子槍真空蒸鍍系統(E-gun evaporator).......... 45 3-3 實驗步驟.................................... 46 3-3-1 實驗流程圖................................ 46 3-3-2 試片的清洗與鍍金........................... 46 3-3-3 試片的承載與載入........................... 47 3-3-4 磊晶成長.................................. 48 3-4材料分析與電性量測............................. 49 3-4-1材料分析................................... 49 3-4-2電性量測................................... 51 第四章 實驗結果與討論............................ 53 4-1 GaAs 奈米線之形貌與結構分析.................... 53 4-1-1 As束流對奈米線成長的影響..................... 53 4-1-2 Ga束流對奈米線成長的影響..................... 57 4-1-3 時間對奈米線成長的影響....................... 59 4-1-4 成長溫度對奈米線成長的影響.................... 61 4-1-5 五三比對奈米線成長的變化...................... 63 4-1-6 退火溫度對奈米線成長的影響.................... 65 4-1-7 退火時間對奈米線成長的影響.................... 67 4-1-8 金薄膜厚度對奈米線成長的影響.................. 69 4-1-9 GaAs奈米線之拉曼分析....................... 72 4-1-10 GaAs奈米線之結構分析....................... 74 4-1-11 GaAs奈米線之成分分析....................... 77 4-2 Core-shell形貌與結構分析...................... 79 4-2- 1 成長溫度對 shell層成長的影響................. 79 4-2-2 As 束流對 shell 層成長的影響................. 81 4-2-3 Ga束流對 shell層的變化..................... 83 4-2-4 生長時間對 shell層的影響..................... 85 4-2-5 core層的生長時間對 core-shell的影響........... 88 4-2-6 Core-Shell奈米線之結構分析.................. 90 4-3 GaAs奈米線電性探討............................. 92 第五章 結論...................................... 95 第六章 參考文獻.................................. 97

    1.Iijma, S., Nature 1991, 354, 56.
    2.Thelander, C., Matensson, T., Bjork, M. T., Ohlsson, B.
    J., Larrsson, M. W., Wallenberg, L. R., samuelson, L.,
    Appl. Phys. Lett. 2003, 83, 241.
    3.Duan, X., Huang, Y., Agarwal, R., Lieber, C. M., Nature
    2003, 421, 1845.
    4.Zhang, D., Li, Liu, X., Han, S., Tang, T., Zhou, C., Appl.
    Phys. Lett. 2003, 77, 163.
    5.Kayes, B. M., Atwater, H. A., Lewis, N. S., J. Appl. Phys.
    2005, 97.
    6.Landes, C. F., Link, S., Mohamed, M. B., Nikoobakht, B.,
    El-Sayed, M. A., Pure Appl. Chem. 2002, 74, 1675.
    7.Mohamed, M. B., Burda, C., El-Sayed, M. A., NANO Lett.
    2001, 1, 589.
    8.Schubert, E.F., Quantum mechanics and quantum structures
    2003.
    9.Martel, R., Schmidt, T., Shea, H. R., Hertel, T., Avouris,
    Ph., Appl. Phys. Lett. 1998, 73, 2447.
    10.Johnson, J. C., Choi, H. J., Knutsen, K. P., Schaller, R.
    D., Yang, P., Saykally, J., Nature Materials. 2002, 1,
    106.
    11.Liu, Y., Cui, T., Varahramyan, K., Solid-State
    Electronics. 2003, 47, 1543.
    12.Liu, C. Y., Lue, H. T., Tseng, T. Y., Appl. Phys. Lett.
    2002, 81, 4416.
    13.Peumans, P., Uchida, S., Forrest, S. R., Nature.2003,
    425, 158.
    14.R. Victor Jones, R.L.W.; Available from:
    http://people.seas.harvard.edu/~jones/es154/lectures/lectur
    e_2/covalent_bond/diam_struct_1.jpg.
    15.Zardo, I., Conesa-Boj, S., Peiro, F., Morante, J. R.,
    Arbiol, J., Uccelli, E., Abstreiter, G., Morral, A. F.
    i., Phys. Rev. B. 2009, 80, 245324.
    16.Mitate, T., Sonoda, Y., Kuwano, N., phys. stat. sol.
    2002, 192, 383.
    17.Heiss, M., Conesa-Boj, S., Ren, J., Tseng, H. H., Gali,
    A., Rudolph ,A., Uccelli, E., Peir’o, F., Morante, J. R.,
    Schuh, D., Reiger, E., Kaxiras, E., Arbiol, J., Morral,
    A. F. I., Phys. Rev. B. 2011, 83, 045303.
    18.Streetman, B. G., Banerjee, S. K., Solid State Electronic
    Devices. 2005
    19.Jones, R.V.; Available from:
    http://people.seas.harvard.edu/~jones/ap216/images/bandgap_
    engineering/bandgap_engineering.html.
    20.Kondow, M., Kitatani, T., Nakatsuka, S., Larson, C.,
    Nakahara, K., Yazawa, Y., Okai, M., Uomi, K., IEEE J.
    Sel. Top. Quant. Elect. 1997, 3,719 .
    21.Available from:
    http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html.
    22.Wagner, R. S., Ellis, W. C., Appl. Phys. Lett. 1964, 4,
    89.
    23.Bell, D. C., Wu, Y., Barrelet, C. J., Gradecak, S.,
    Xiang, J., Timko, B. P., Lieber, C. M., Microsc. Res.
    Tech. 2004, 64, 373.
    24.Wu, Y., Yang, P. J. Am., Chem. Soc. 2001, 123, 3165.
    25.Sears, G. W., Acta. Matal. 1955, 3, 361.
    26.Pan, Z. W., Dai, Z. R., Wang, Z. L., Science. 2001, 291,
    1947.
    27.Lee, S. T., Zhang, Y. F., Wang, N., Tang, Y. H., Bello,
    I., Lee, C. S., Chung, Y. W., J. Mater. Res. 1999, 14,
    4503.
    28.Shi, W. S., Zheng, Y. H., Wang, N., Lee, C. S., Lee, S.
    T., Adv. Mater. 2001, 13, 591.
    29.Shi, W. S., Zheng, Y. H., Wang, N., Lee, C. S., Lee, S.
    T., J. Vac. Sci. Technol. B. 2001, 19, 1115.
    30.Shi, W. S., Zheng, Y. H., Wang, N., Lee, C. S., Lee, S.
    T., Chem. Phys. Lett. 2001, 345, 377.
    31.Trentler, T. J., Hickman, K. M., Goel, S. C., Viano, A.
    M., Gibbons, P. C., Buhro, W. E., Science, 1995, 270,
    1791.
    32.Trentler, T. J., Hickman, K. M., Goel, S. C., Viano, A.
    M., Gibbons, P. C., Buhro, W. E., Science, 1995, 270,
    1791.
    33.Wu, Z. H., Mei, X. Y., Blumin, D. K. M., Ruda, H. E. ,
    Appl. Phys. Lett. 2002, 81, 5177.
    34.Yang, P., Wu,Y., Fan, R., International Journal of
    Nanoscience. 2000 , 1, 1
    35.Wang, N., Cai, Y., Zhang, R. Q., Mat. Sci. Eng. R. 2008,
    60, 1
    36.Breuer, S., Hilse, M., Trampert, A., Geelhaar, L.,
    Riechert, H., Phys. Rev. B. 2010, 82, 075406.
    37.Dubrovskii, V. G., Cirlin, G. E., Soshnikov, I. P.,
    Tonkikh, A. A., Sibirev, N. V., Samsonenko, Yu. B.,
    Ustinov, V. M., Phys. Rev. B. 2005, 71, 205325.
    38.Plante, M. C., LaPierre, R. R., Nanotechnology. 2008, 19,
    495603
    39.Morral, A. F. I., Spirkoska, D., Arbiol, J., Heigoldt,
    M., Morante, J. M., Abstreiter, G., Small. 2008, 4, 899.
    40.Roest, A. L., Verheijen, M. A., Wunnicke, O., Serafin,
    S., Wondergem, H., Bakkers, E. P. A. M., Nanotechnology.
    2006, 17, S271.
    41.Kang, J. H., Gao, Q. Joyce, H. J., Tan, H. H., Jagadish,
    C., Kim, Y., Choi, D. Y., Guo, Y., Xu, H., Zou, J.,
    Fickenscher, M. A., Smith, L. M., Jackson, H. E., Rice,
    J. M. Y., Nanotechnology. 2010, 21, 035604.
    42.Paek, J. H., Nishiwaki, T., Yamaguchi, M., Sawaki, N.,
    Phys. Stat. sol. 2008, 5, 2740.
    43.Chatillon, C., Hodaj, F., J. Cryst. Growth. 2009, 311,
    3598.
    44.Zhang, R. Q., Lifshitz, Y., Ma, D. D. D., Zhao, Y. L.,
    Frauenheim, Th., Lee, S. T., Tong, S. Y., J. Chem. Phys.
    2005, 123, 144703.
    45.Leitsmann, R., Bechstedt, F., J. Appl. Phys.2007, 102,
    063528.
    46.Dubrovskii, V. G., Sibirev, N. V., Phys. Rev. B. 2008,
    77, 035414.
    47.Spirkoska, D., Arbiol, J., Gustafsson, A., Conesa-Boj,
    S., Glas, F., Zardo, I., Heigoldt, M., Gass, M. H.,
    Bleloch, A. L., Estrade, S., Kaniber, M., Rossler, J.,
    Peiro, F., Morante, J. R., Abstreiter, G., Samuelson, L.,
    Morral, A.F.I., Phys. Rev. B. 2009, 80, 245325.
    48.Ihn, S. G., Song, J. I., Kim, T. W., Leem, D. S., Lee,
    T., Lee, S. G., Koh, E. K., Song, K., Nano. Lett. 2007,
    1, 39.
    49.Lee, Y. H., Yoo, J. M., Park, D. H., Appl. Phys. Lett.
    2005, 86, 033110
    50.Chung, S. w., Yu, J. Y., Heath, J. R., Appl. Phys. Lett.
    2000, 76, 2086.
    51.Fan, Z., Lu, J. G., Appl. Phys. Lett. 2005, 86, 032111
    52.Czaban, J. A., Thompson, D. A., LaPierre,. R. R.,
    Nano.Lett. 2009, 9, 148.
    53.Colombo, C., Hei, M., Gratzel. M., Morral, A. F. I.,
    Appl. Phys. Lett. 2009, 94, 173108.
    54.真空技術與應用, 行政院國家科學委員會精密儀器發展中心,2001.
    55.Hill, M., Molecular Beam Epitaxy. 1994.
    56.Cho, A. Y., J. Appl. Phys. 1971, 42, 2074.
    57.Zardo, I., Conesa-Boj, S., Peiro, F., Morante, J. R.,
    Arbiol, J., Uccelli, E., Abstreiter, G., Morral, A. F.
    I., Phys. Rev. B. 2009, 80, 245324.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE