研究生: |
李俊錡 Lee, Chun-Chi |
---|---|
論文名稱: |
零價矽結合重金屬離子降解四氯乙烯還原脫氯反應之研究 Reductive Dechlorination of Tetrachloroethylene by Zerovalent Silicon in the Presence of Heavy Metal Ions |
指導教授: |
董瑞安
Doong, Ruey-An |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 184 |
中文關鍵詞: | 零價矽 、四氯乙烯 、滲透性反應牆 、還原降解 |
外文關鍵詞: | Silicon, Tetrachloroethylene, Permeable reactive barrier, Reductive dechlorination |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氯化有機污染物如四氯化碳、四氯乙烯及三氯乙烯為地下水中常見之污染物質。以零價鐵為填充材料的滲透性反應牆為一種利用所充填活性金屬還原降解氯化有機物之方法,此方法可有效且長時效的分解環境中常見之氯化有機污染物質。然而,在無氧的情況下長期使用零價鐵的結果,不可避免的會使得系統的pH上升,進而導致零價鐵表面形成不具反應性之鐵氧化物,使得去除污染物之效果大幅降低。零價矽被發現可以與零價鐵金屬結合,在無氧環境中可減緩pH的上升。然而,利用零價矽及其相關之雙金屬材料在不同的環境條件下分解氯化有機物質之機轉與操作條件仍少有相關文獻報導。
研究的主要目的是評估利用零價矽還原降解氯化有機物之可行性,並且瞭解在不同環境因子下包括pH、界面活性劑及共污染物對零價矽的活性影響以釐清重金屬離子銅及鎳離子對於氯化有機物降解速率及反應機制之可能效應。研究中發現,利用零價矽對氯化有機物之降解速率會隨著系統中pH而增加,在pH 7.2時,四氯化碳之擬一階反應速率常數(kobs)為0.5 h-1,然而在pH 9.5時,其降解速率可增加至2.11 h-1。研究中亦發現,較難分解之烯類氯化有機物如四氯乙烯亦可被零價矽還原,然而降解之產物依舊為含氯之三氯乙烯,且反應半衰期長達8.5天。利用環境中常見之重金屬污染物質包括鎳離子及銅離子搭配零價矽具則有協同效應可加速氯化有機物之降解速率及產物分佈比率。在含有1.5 wt% 鎳離子的情況下,零價矽降解四氯乙烯的之能力及反應速度均有大幅度的提升,從原先之3.4 × 10-3 h-1提升至5.2 × 10-2 h-1。 利用X-光光電子能譜儀(XPS) 來鑑定鎳離子於零價矽表面之價態,發現鎳離子可以有效的被零價矽還原成鎳零價金屬並沈積於其表面。電子微探分析儀 (EPMA)也被應用於鑑定零價鎳沈積在零價矽表面之分佈情形。研究中,成功的建立利用零價矽搭配不同濃度之鎳離子降解四氯乙烯之反應速率、分解產物分佈及其表面特性間之交互關係。
零價及一價銅為另一種具有催化零價鐵加速還原氯化有機物的重金屬。在零價矽系統中,從XPS的結果得知零價矽可還原所吸附之銅離子而形成銅-矽雙金屬材料,然而,在零價矽系統中添加3 wt %之銅離子卻會降低其對氯化有機物的降解能力,其擬一階反應速率常數從原先的3.4 × 10-3 降至1.7 × 10-3 h-1,其主要的原因為銅離子在零價矽之最佳化pH情況下,會形成不溶性之氫氧化銅並覆蓋於零價矽表面,進而抑制了零價矽之反應能力。降低所添加之銅離子濃度至0.06 wt %發現可有效降低氫氧化銅之形成,擬一階反應速率常數研究提升至2.8 × 10-2 h-1。利用聚乙二醇(PEG)進行零價矽表面修飾為另一種可行之方法,當零價矽表面修飾PEG搭配0.15 wt % 銅離子時可將四氯乙烯有效的分解,其擬一階反應速率常數由原先之0.36 提升至0.56 h-1。然而,當添加之銅離子濃度高於0.15 wt % 時,四氯乙烯的降解速率將被抑制。從EPMA分析結果搭配理論計算,當銅離子添加量為0.16 wt % 時對PEG表面修飾之零價矽的表面的覆蓋率為100%。因此,再增加銅離子濃度於系統中則會降低對四氯乙烯的降解速率。
研究中也發現界面活性劑可以有效地加速零價矽對四氯乙烯之反應速率。當系統中添加SDS以及Tween 80 時,並無助於四氯乙烯降解速率的提升。然而,添加CTAB以及PEG於零價矽系統中則可以有效地加速零價矽降解四氯乙烯之能力。添加0.2 □M之PEG於零價矽系統中,其反應速率常數可由原先之3.4 × 10-3 增加至0.36 h-1。所添加之PEG濃度與其相對應之反應速率常數也呈現一線性關係。此外,其反應速率常數相對於其四氯乙烯反應起始濃度之關係,可利用Langmuir-Hinshelwood方程式解釋,表面添加PEG對零價矽的反應仍為表面催化反應。由XPS之結果可以得知零價矽表面修飾PEG可以有效降低SiO2之生成,而使得零價矽表面修飾PEG系統相對於零價矽具有較高之反應性。
由本研究中所得到的結果可以清楚地呈現零價矽不僅具有強還原能力可有效降解氯化有機物及吸附重金屬,所吸附的重金屬能被還原成零價金屬,進而形成雙金屬系統,加速對氯化有機物的分解能力及改變產物分佈結構。零價矽反應後產生之二氧化矽並不會使溶液的pH上升,且為環境友善的物質,不會對環境造成二次危害,而零價矽表面修飾PEG可以抑制二氧化矽的生成。零價矽為一環境友善材料並可對有機及無機污染物進行處理,在實際應用上可為滲透性反應牆系統提供另一種有效材料之選擇。
Chlorinated hydrocarbons such as carbon tetrachloride (CT), trichloroethylene (TCE), and tetrachloroethylene (PCE) are the most often found toxic organic pollutants in the contaminated groundwater. Permeable reactive barrier (PRB), a developed chemical reduction technology filled with zerovalent iron as the reductive material, is an effcetive method which can longevously dechlorinate the chlorinated contaminants in groundwater. However, the increased pH and formation of iron oxides are inevitable when zerovalent iron is applied for the long-term remediation under anoxic conditions. The combination of zerovalent silicon with iron has been found to maintain the solution pH during dechlorination processes. In addition, zerovalent silicon is also a strong reductive material that can apply to dechlorinate the chlorinate hydrocarbons. However, the application of zerovalent silicon and the bimetallic system for dechlorination under various conditions remains unclear.
The main purpose of this study was to evaluate the feasibility of using zerovalent silicon as the reductive material applied in the dechlorination of chlorinated compound and elucidate the parameters can influence the reactivity of the silicon system when applied in environment. For this purpose, pH value effect, co-contaminant effect of inorganic metal ion such as Fe(II), Ni(II), Cu(II) and in the presence of amphiphiles compounds were selected as the parameter to elucidate the interaction mechanism in each parameters to the reactivity of zerovalent silicon. The dechlorination efficiency and rate of chlorinated hydrocarbons by zerovalent silicon increased upon increasing pH from 7.2 to 9.5. The dechlorination followed the pseudo-first-order kinetics and the rate constant (kobs) for CT dechlorination increased from 0.5 h-1 at pH 7.2 to 2.11 h-1 at pH 9.5. In addition, PCE could also be dechlorinated by zerovalent silicon. However, the half life of PCE dechlorination by zerovalent silicon was 8.5 d and the complete transform to non-toxic hydrocarbon was rare. The synergistic effect of Ni(II) and Cu(II) ions which are commonly found heavy metal contaminants in groundwater on the dechlorination rate as well as mechanism by zerovalent silicon was investigated. The dechlorination efficiency and rate of PCE can be significantly enhanced in the presence of Ni(II). The kobs for PCE dechlorination increased from 3.4 x 10-3 to 5.2 x 10-2 h-1 when the loading of Ni(II) increased from 0 to 1.5 wt%. X-ray photoelectron spectroscopy (XPS) were used to characterize and confirmed that the added Ni(II) was reduced to zerovalent Ni by the reduction of zerovalent silicon. Electron probe micro-analyzer (EPMA) was used to characterize the particle size and distribution of reduced Ni species on the silicon surface. The relationship was established and clearly identified between the change in kobs value and the by-products distribution in silicon system with each loading of Ni(II) and its related variable change in physical morphology of Ni distribution on silicon surface.
Zerovalent and monovalent copper species was found as the catalyst can enhance the dechlorination rate when combined to reductive metal. Although the formation of zerovalent copper in the silicon system was observed and characterized by XPS, the dechlorination was inhibited. The kobs value was decreased from 3.4 x 10-3 to 1.7 x 10-3 when 3 wt % of Cu(II) was amended, presumably attributed to the formation of insoluble Cu(OH)2 at the optimized pH value in silicon system. The limitation of Cu loading in silicon system can be minimized by decreasing the loading of Cu(II). Dechlorination results gave the fully support that the kobs value was increased to 2.8 x 10-2 h-1 when the loaded Cu(II) was decreased to 0.03 wt %.
The synergistic effect of Cu(II) ion on PCE dechlorination by PEG-coated zerovalent silicon was achieved. With the addition of 0-0.15 wt% of Cu(II) in PEG-coated zerovalent silicon, the kobs for PCE dechlorination increased from 0.35 to 0.56 h-1. However, the dechlorination ability of PEG-coated zerovalent silicon decreased when the loading of Cu(II) was higher than 0.15 wt %. The EPMA results and theoretical calculation indicate that the surface coverage of Cu species on the zerovalent silicon surface is responsible for the change in kobs for PCE dechlorination in the presence of various concentrations of Cu(II). The calculated 100 % surface coverage of Cu onto the silicon surface is located at 0.16 wt %. The dechlorination efficiency and rate of PCE by zerovalent silicon was significantly inhibited when the zerovalent silicon surface was completely covered with Cu atom at 0.17 wt% loading of Cu(II) which gave the full support to the theorical calculation and the observation from EPMA results.
The dechlorination of PCE by zerovalent silicon can also be enhanced by the addition of surfactant. The surfactants including were selected for comparison. Addition of SDS and Tween 80 had little effect on enhancement of PCE dechlorination, while CTAB and PEG could significantly enhance the dechlorination efficiency of PCE by zerovalent silicon, and a nearly complete dechlorination was observed. The kobs value of PCE dechlorination by zerovalent silicon would be enhanced from 0.0034 to 0.36 h-1 when the loading of PEG increased from 0 to 0.2 □M. A linear relationship between the PEG concentration and kobs for PCE dechlorination was established. Moreover, the kobs for PCE dechlorination was dependent on the initial pollutant concentration and followed the Langmuir-Hinshelwood relationship. The XPS results indicate that addition of PEG can prevent the formation of SiO2, and is the major plausible reason to dramatically enhance the reactivity of the zerovalent silicon system.
The results obtained in the study clearly shows that the zerovalent silicon was not only a pH adjuster in zerovalent iron system but also can act as an alternative reductive material to dechlorinate and remove organic and inorganic pollutants.
1 Forkert, P. G., Sylvestre, P. L. & Poland, J. S. Lung Injury Induced by Trichloroethylene. Toxicology 35, 143-160 (1985).
2 Sujatha, T. V. & Hegde, M. J. C-mitotic effects of Trichloroethylene (TCE) on bone marrow cells of mice. Mutat Res-Gen Tox En 413, 151-158 (1998).
3 Lash, L. H. et al. Glutathione conjugation of perchloroethylene in rats and mice in vitro: Sex-, species-, and tissue-dependent differences. Toxicol Appl Pharm 150, 49-57 (1998).
4 Roberts, A. L. & Gschwend, P. M. Interaction of Abiotic and Microbial Processes in Hexachloroethane Reduction in Groundwater. J Contam Hydrol 16, 157-174 (1994).
5 Mackay, D., Shiu, W. Y. & Ma, K. C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Orgainc Chemicals 3, 48118 (1993).
6 Stroo, H. F. et al. Remediating chlorinated solvent source zones. Environ Sci Technol 37, 224a-230a (2003).
7 Henry, S. M., Hardcastle, C. H. & Warner, S. D. Chlorinated solvent and DNAPL remediation: An overview of physical, chemical, and biological processes. Acs Sym Ser 837, 1-20 (2003).
8 Boulding, J. R. USEPA Environmental Engineering Sourcebook (1996).
9 Vogel, T. M., Criddle, C. S. & Mccarty, P. L. Transformations of Halogenated Aliphatic-Compounds. Environ Sci Technol 21, 722-736 (1987).
10 Khan, F. I., Husain, T. & Hejazi, R. An overview and analysis of site remediation technologies. J Environ Manage 71, 95-122 (2004).
11 Baker, R. S. & Moore, A. T. Optimizing the effectiveness of in situ bioventing. Pollut Eng 32, 44-47 (2000).
12 Halmemies, S., Grondahl, S., Arffman, M., Nenonen, K. & Tuhkanen, T. Vacuum extraction based response equipment for recovery of fresh fuel spills from soil. J Hazard Mater 97, 127-143 (2003).
13 Zhan, H. B. & Park, E. Vapor flow to horizontal wells in unsaturated zones. Soil Sci Soc Am J 66, 710-721 (2002).
14 Shrestha, R. A., Pham, T. D. & Sillanpaa, M. Remediation of chrysene from contaminated soil by enhanced electrokinetics. Int J Electrochem Sc 4, 1387-1394 (2009).
15 Cabreraguzman, D., Swartzbaugh, J. T. & Weisman, A. W. The use of electrokinetics for hazardous-waste site remediation. J Air Waste Manage 40, 1670-1676 (1990).
16 Chew, C. F. & Zhang, T. C. In-situ remediation of nitrate-contaminated ground water by electrokinetics iron wall processes. Water Sci Technol 38, 135-142 (1998).
17 Chang, J. H. & Cheng, S. F. The remediation performance of a specific electrokinetics integrated with zero-valent metals for perchloroethylene contaminated soils. J Hazard Mater 131, 153-162 (2006).
18 Kubal, M., Janda, V., Benes, P. & Hendrych, J. In situ chemical oxidation and its application to remediation of contaminated soil and groundwater. Chem Listy 102, 493-499 (2008).
19 Li, X. D. & Schwartz, F. W. DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part I. Mineralogy of Mn oxide and its dissolution in organic acids. J Contam Hydrol 68, 39-53 (2004).
20 Sherwood, L. J. & Qualls, R. G. Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environ Sci Technol 35, 4126-4131 (2001).
21 Weyens, N. et al. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158, 2422-2427 (2010).
22 Muthukumar, T. & Bagyaraj, D. J. Use of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. P Natl a Sci India B 80, 103-121 (2010).
23 Singhal, V. & Rai, J. P. N. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresource Technol 86, 221-225 (2003).
24 Alkorta, I. & Garbisu, C. Phytoremediation of organic contaminants in soils. Bioresource Technol 79, 273-276 (2001).
25 Jabeen, R., Ahmad, A. & Iqbal, M. Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms. Bot Rev 75, 339-364 (2009).
26 Jorand, F., Zegeye, A., Landry, F. & Ruby, C. Reduction of ferric green rust by Shewanella putrefaciens. Lett Appl Microbiol 45, 515-521 (2007).
27 Esteve-Nunez, A., Rothermich, M., Sharma, M. & Lovley, D. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ Microbiol 7, 641-648 (2005).
28 Deutsh, W. J. Ground Water geochemistry: Fundamentals and application to contamination, Lewis Publishers: Washington, D. C. (1997).
29 Holliger, C. & Schraa, G. Physiological Meaning and Potential for Application of Reductive Dechlorination by Anaerobic-Bacteria. Fems Microbiol Rev 15, 297-305 (1994).
30 Holliger, C., Schraa, G., Stams, A. J. M. & Zehnder, A. J. B. A Highly Purified Enrichment Culture Couples the Reductive Dechlorination of Tetrachloroethene to Growth. Appl Environ Microb 59, 2991-2997 (1993).
31 Krumholz, L. R., Sharp, R. & Fishbain, S. S. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microb 62, 4108-4113 (1996).
32 McCarty, P. L. Microbiology - Breathing with chlorinated solvents. Science 276, 1521-1522 (1997).
33 Wolfe, W. J. & Haugh, C. J. Preliminary Conceptual Models Of Chlorinated-Solvent Accumulation in Karst Aquifers. Water-Resources Investigations Report, 157-162 (2001).
34 Powell, R. M. et al. Permeable reactive barrier technologies for contaminant remediation. US EPA 1998 SEP (1998).
35 Fredrickson, J. K. et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Ac 62, 3239-3257 (1998).
36 Kukkadapu, R. K. et al. Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions. Am Mineral 88, 1903-1914 (2003).
37 McCormick, M. L. & Adriaens, P. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environ Sci Technol 38, 1045-1053 (2004).
38 McCormick, M. L., Bouwer, E. J. & Adriaens, P. Carbon tetrachloride transformation in a model iron-reducing culture: Relative kinetics of biotic and abiotic reactions. Environ Sci Technol 36, 403-410 (2002).
39 Matheson, L. J. & Tratnyek, P. G. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ Sci Technol 28, 2045-2053 (1994).
40 Oura, K., Lifshits, V. G., Saranin, A. A., Zotov, A. V. & Katayama, M. Hydrogen interaction with clean and modified silicon surfaces. Surf Sci Rep 35, 1-69 (1999).
41 Struck, L. M. et al. Vibrational study of silicon oxidation: H2O on Si(100). Surf Sci 380, 444-454 (1997).
42 Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M. & Suma, K. Control Factor of Native Oxide-Growth on Silicon in Air or in Ultrapure Water. Appl Phys Lett 55, 562-567 (1989).
43 Ogawa, H., Ishikawa, K., Inomata, C. & Fujimura, S. Initial stage of native oxide growth on hydrogen terminated silicon (111) surfaces. J Appl Phys 79, 472-477 (1996).
44 Doong, R. A., Chen, K. T. & Tsai, H. C. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Environ Sci Technol 37, 2575-2581 (2003).
45 Lien, H. L. & Zhang, W. X. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al. Chemosphere 49, 371-378 (2002).
46 Birnbaum, H. K. et al. Hydrogen in aluminum. J Alloy Compd 253, 260-264 (1997).
47 Bokare, A. D. & Choi, W. Zero-Valent Aluminum for Oxidative Degradation of Aqueous Organic Pollutants. Environ Sci Technol 43, 7130-7135 (2009).
48 Lien, H. S. L. & Wilkin, R. Reductive activation of Dioxygen for degradation of methyl tert-butyl ether by bifunctional aluminum. Environ Sci Technol 36, 4436-4440 (2002).
49 Chen, L. H., Huang, C. C. & Lien, H. L. Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 73, 692-697 (2008).
50 Morales, J., Hutcheson, R. & Cheng, I. F. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles. J Hazard Mater 90, 97-108 (2002).
51 Adriaens, P., Chang, P. R. & Barkovskii, A. L. Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere 32, 433-441 (1996).
52 Wang, Z. Y., Huang, W. L., Fennell, D. E. & Peng, P. A. Kinetics of reductive dechlorination of 1,2,3,4-TCDD in the presence of zero-valent zinc. Chemosphere 71, 360-368 (2008).
53 Szecsody, J. E., Fruchter, J. S., Williams, M. D., Vermeul, V. R. & Sklarew, D. In situ chemical reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination. Environ Sci Technol 38, 4656-4663 (2004).
54 Orth, W. S. & Gillham, R. W. Dechlorination of trichloroethene in aqueous solution using Fe-O. Environ Sci Technol 30, 66-71 (1996).
55 Chen, J. L., Al-Abed, S. R., Ryan, J. A. & Li, Z. B. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. J Hazard Mater 83, 243-254 (2001).
56 Schuth, C., Bill, M., Barth, J. A. C., Slater, G. F. & Kalin, R. A. Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers. J Contam Hydrol 66, 25-37 (2003).
57 Li, Z. H., Jones, H. R., Bowman, R. S. & Helferich, R. Enhanced reduction of chromate and PCE by palletized surfactant-modified zeolite/zerovalent iron. Environ Sci Technol 33, 4326-4330 (1999).
58 Farrell, J., Kason, M., Melitas, N. & Li, T. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ Sci Technol 34, 514-521 (2000).
59 Bizzigotti, G. O., Reynolds, D. A. & Kueper, B. H. Enhanced solubilization and destruction of tetrachloroethylene by hydroxypropyl-beta-cyclodextrin and iron. Environ Sci Technol 31, 472-478 (1997).
60 Novak, P. J., Daniels, L. & Parkin, G. F. Enhanced dechlorination of carbon tetrachloride and chloroform in the presence of elemental iron and Methanosarcina barkeri, Methanosarcina thermophila, or Methanosaeta concillii. Environ Sci Technol 32, 1438-1443 (1998).
61 Alowitz, M. J. & Scherer, M. M. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36, 299-306 (2002).
62 Westerhoff, P. & James, J. Nitrate removal in zero-valent iron packed columns. Water Res 37, 1818-1830 (2003).
63 Su, C. M. & Puls, R. W. Nitrate reduction by zerovalent iron: Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38, 2715-2720 (2004).
64 Kim, Y. H. & Carraway, E. R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34, 2014-2017 (2000).
65 Feng, J. & Lim, T. T. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 59, 1267-1277 (2005).
66 Loraine, G. A. Effects of alcohols, anionic and nonionic surfactants on the reduction of PCE and TCE by zero-valent iron. Water Res 35, 1453-1460 (2001).
67 Liu, Y. Q., Majetich, S. A., Tilton, R. D., Sholl, D. S. & Lowry, G. V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39, 1338-1345 (2005).
68 Arnold, W. A. & Roberts, A. L. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(O) particles. Environ Sci Technol 34, 1794-1805 (2000).
69 Lee, W. & Batchelor, B. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36, 5147-5154 (2002).
70 Scherer, M. M., Balko, B. A. & G., T. P. The role of oxides in reduction reactions at the metal–water interface. In Mineral–Water Interfacial Reactions: Kinetics and Mechanisms. American Chemical Society, Washington, DC 715, 301 (1998).
71 Arnold, W. A. & Roberts, A. L. Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0). Environ Sci Technol 32, 3017-3025 (1998).
72 Li, T. & Farrell, J. Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ Sci Technol 34, 173-179 (2000).
73 Liu, Y. Q. & Lowry, G. V. Effect of particle age (Fe-o content) and solution pH on NZVI reactivity: H-2 evolution and TCE dechlorination. Environ Sci Technol 40, 6085-6090 (2006).
74 Wang, J. K. & Farrell, J. Determining the atomic hydrogen surface coverage on iron and nickel electrodes under water treatment conditions. J Appl Electrochem 36, 369-374 (2006).
75 Deng, B. L., Burris, D. R. & Campbell, T. J. Reduction of vinyl chloride in metallic iron-water systems. Environ Sci Technol 33, 2651-2656 (1999).
76 Patel, U. D. & Suresh, S. Effects of solvent, pH, salts and resin fatty acids on the dechlorination of pentachlorophenol using magnesium-silver and magnesium-palladium bimetallic systems. J Hazard Mater 156, 308-316 (2008).
77 Cho, H. H. & Park, J. W. Effect of coexisting compounds on the sorption and reduction of trichloroethylene with iron. Environ Toxicol Chem 24, 11-16 (2005).
78 Rodriguez-Maroto, J. M., Garcia-Herruzo, F., Garcia-Rubio, A., Gomez-Lahoz, C. & Vereda-Alonso, C. Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere 74, 804-809 (2009).
79 Park, H., Park, Y. M., Yoo, K. M. & Lee, S. H. Reduction of nitrate by resin-supported nanoscale zero-valent iron. Water Sci Technol 59, 2153-2157 (2009).
80 Powell, R. M., Puls, R. W., Hightower, S. K. & Sabatini, D. A. Coupled Iron Corrosion and Chromate Reduction - Mechanisms for Subsurface Remediation. Environ Sci Technol 29, 1913-1922 (1995).
81 Blowes, D. W. et al. Treatment of inorganic contaminants using permeable reactive barriers. J Contam Hydrol 45, 123-137 (2000).
82 Kumpiene, J., Montesinos, I. C., Lagerkvist, A. & Maurice, C. Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil. Chemosphere 67, 410-417 (2007).
83 Wilkin, R. T. & McNeil, M. S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere 53, 715-725 (2003).
84 Ponder, S. M., Darab, J. G. & Mallouk, T. E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34, 2564-2569 (2000).
85 Kanel, S. R., Greneche, J. M. & Choi, H. Arsenic(V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40, 2045-2050 (2006).
86 Li, X. Q. & Zhang, W. X. Sequestration of metal cations with zerovalent iron nanoparticles - A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111, 6939-6946 (2007).
87 Doong, R. A. & Chiang, H. C. Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compounds. Environ Sci Technol 39, 7460-7468 (2005).
88 Stumm, W. & Sulzberger, B. The Cycling of Iron in Natural Environments - Considerations Based on Laboratory Studies of Heterogeneous Redox Processes. Geochim Cosmochim Ac 56, 3233-3257 (1992).
89 Doong, R. A. & Lai, Y. J. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Res 39, 2309-2318 (2005).
90 Alessi, D. S. & Li, Z. H. Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environ Sci Technol 35, 3713-3717 (2001).
91 Cho, H. H. & Park, J. W. Sorption and reduction of tetrachloroethylene with zero valent iron and amphiphilic molecules. Chemosphere 64, 1047-1052 (2006).
92 Tratnyek, P. G., Scherer, M. M., Deng, B. L. & Hu, S. D. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Res 35, 4435-4443 (2001).
93 Xie, L. & Shang, C. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environ Sci Technol 39, 1092-1100 (2005).
94 Cervantes, F. J., Vu-Thi-Thu, L., Lettinga, G. & Field, J. A. Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge. Appl Microbiol Biot 64, 702-711 (2004).
95 Perlinger, J. A., Kalluri, V. M., Venkatapathy, R. & Angst, W. Addition of hydrogen sulfide to juglone. Environ Sci Technol 36, 2663-2669 (2002).
96 Liou, Y. H., Lo, S. L., Kuan, W. H., Lin, C. J. & Weng, S. C. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res 40, 2485-2492 (2006).
97 Lien, H. L. & Zhang, W. X. Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng-Asce 125, 1042-1047 (1999).
98 Lien, H. L. & Zhang, W. X. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surface A 191, 97-105 (2001).
99 Zhang, W. X., Wang, C. B. & Lien, H. L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40, 387-395 (1998).
100 Zhang, W. X. Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5, 323-332 (2003).
101 Lowry, G. V. & Johnson, K. M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38, 5208-5216 (2004).
102 Nurmi, J. T. et al. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39, 1221-1230 (2005).
103 Wang, C. B. & Zhang, W. X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31, 2154-2156 (1997).
104 Wei, Y. T. et al. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Res 44, 131-140 (2010).
105 Tratnyek, P. G. & Johnson, R. L. Nanotechnologies for environmental cleanup. Nano Today 1, 44-48 (2006).
106 Choe, S., Lee, S. H., Chang, Y. Y., Hwang, K. Y. & Khim, J. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe-0. Chemosphere 42, 367-372 (2001).
107 Glazier, R. et al. Nanotechnology takes root. Civil Eng 73, 64-69 (2003).
108 Elliott, D. W. & Zhang, W. X. Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 35, 4922-4926 (2001).
109 Ponder, S. M. et al. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13, 479-486 (2001).
110 Sarathy, V. et al. Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity. J Phys Chem C 112, 2286-2293 (2008).
111 Cushing, B. L., Kolesnichenko, V. L. & O'Connor, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104, 3893-3946 (2004).
112 Karn, B., Kuiken, T. & Otto, M. Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks. Environ Health Persp 117, 1823-1831 (2009).
113 Kim, H. J., Phenrat, T., Tilton, R. D. & Lowry, G. V. Fe-0 Nanoparticles Remain Mobile in Porous Media after Aging Due to Slow Desorption of Polymeric Surface Modifiers. Environ Sci Technol 43, 3824-3830 (2009).
114 Lin, Y. H., Tseng, H. H., Wey, M. Y. & Lin, M. D. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci Total Environ 408, 2260-2267 (2010).
115 Kanel, S. R., Nepal, D., Manning, B. & Choi, H. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9, 725-735 (2007).
116 Tufenkji, N. & Elimelech, M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38, 529-536 (2004).
117 Phenrat, T. et al. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10, 795-814 (2008).
118 Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D. & Lowry, G. V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41, 284-290 (2007).
119 He, F., Zhao, D. Y., Liu, J. C. & Roberts, C. B. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46, 29-34 (2007).
120 Tiraferri, A., Chen, K. L., Sethi, R. & Elimelech, M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interf Sci 324, 71-79 (2008).
121 Paknikar, K. M., Nagpal, V., Pethkar, A. V. & Rajwade, J. M. Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mat 6, 370-374 (2005).
122 Phenrat, T. et al. Particle Size Distribution, Concentration, and Magnetic Attraction Affect Transport of Polymer-Modified Fe-0 Nanoparticles in Sand Columns. Environ Sci Technol 43, 5079-5085 (2009).
123 Geng, B., Jin, Z. H., Li, T. L. & Qi, X. H. Preparation of chitosan-stabilized Fe-0 nanoparticles for removal of hexavalent chromium in water. Sci Total Environ 407, 4994-5000 (2009).
124 Schrick, B., Hydutsky, B. W., Blough, J. L. & Mallouk, T. E. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16, 2187-2193 (2004).
125 Yang, G. C. C., Tu, H. C. & Hung, C. H. Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58, 166-172 (2007).
126 Xu, J., Dozier, A. & Bhattacharyya, D. Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J Nanopart Res 7, 449-467 (2005).
127 Wu, Y. J., Zhang, J. H., Tong, Y. F. & Xu, X. H. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe-0 nanoparticles. J Hazard Mater 172, 1640-1645 (2009).
128 Zhan, J. J. et al. Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene. Environ Sci Technol 42, 8871-8876 (2008).
129 He, F. & Zhao, D. Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41, 6216-6221 (2007).
130 Wang, Q. A. et al. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol 114, 35-42 (2010).
131 Tiraferri, A. & Sethi, R. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11, 635-645 (2009).
132 Phenrat, T., Liu, Y. Q., Tilton, R. D. & Lowry, G. V. Adsorbed Polyelectrolyte Coatings Decrease Fe-0 Nanoparticle Reactivity with TCE in Water: Conceptual Model and Mechanisms. Environ Sci Technol 43, 1507-1514 (2009).
133 Xu, J. & Bhattacharyya, D. Membrane-based bimetallic nanoparticles for environmental remediation: Synthesis and reactive properties. Environ Prog 24, 358-366 (2005).
134 Parshetti, G. K. & Doong, R. A. Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Res 43, 3086-3094 (2009).
135 Wang, W., Zhou, M. H., Jin, Z. H. & Li, T. L. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater 173, 724-730 (2010).
136 Zheng, T. H. et al. Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation. Environ Sci Technol 42, 4494-4499 (2008).
137 Fatisson, J., Ghoshal, S. & Tufenkji, N. Deposition of Carboxymethylcellulose-Coated Zero-Valent Iron Nanoparticles onto Silica: Roles of Solution Chemistry and Organic Molecules. Langmuir 26, 12832-12840 (2010).
138 Cheng, S. F. & Wu, S. C. The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere 41, 1263-1270 (2000).
139 Fennelly, J. P. & Roberts, A. L. Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ Sci Technol 32, 1980-1988 (1998).
140 Liang, L. Y. et al. Byproduct formation during the reduction of TCE by zero-valence iron and palladized iron. Ground Water Monit R 17, 122-127 (1997).
141 Muftikian, R., Fernando, Q. & Korte, N. A Method for the Rapid Dechlorination of Low-Molecular-Weight Chlorinated Hydrocarbons in Water. Water Res 29, 2434-2439 (1995).
142 Schrick, B., Blough, J. L., Jones, A. D. & Mallouk, T. E. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14, 5140-5147 (2002).
143 Siantar, D. P., Schreier, C. G., Chou, C. S. & Reinhard, M. Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res 30, 2315-2322 (1996).
144 Cheng, R. et al. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: Role of nano-Ni and its size effect. J Hazard Mater 180, 79-85 (2010).
145 Menini, C., Park, C., Shin, E. J., Tavoularis, G. & Keane, M. A. Catalytic hydrodehalogenation as a detoxification methodology. Catal Today 62, 355-366 (2000).
146 Choi, J. H. & Kim, Y. H. Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc. J Hazard Mater 166, 984-991 (2009).
147 Tee, Y. H., Grulke, E. & Bhattacharyya, D. Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res 44, 7062-7070 (2005).
148 Zhang, W. H., Quan, X., Wang, J. X., Zhang, Z. Y. & Chen, S. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere 65, 58-64 (2006).
149 Lim, T. T., Feng, J. & Zhu, B. W. Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles. Water Res 41, 875-883 (2007).
150 Agarwal, S., Al-Abed, S. R. & Dionysiou, D. D. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environ Sci Technol 41, 3722-3727 (2007).
151 Wang, X. Y., Chen, C., Liu, H. L. & Ma, J. Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Res 42, 4656-4664 (2008).
152 Lin, C. J., Liou, Y. H. & Lo, S. L. Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene. Chemosphere 74, 314-319 (2009).
153 Rivero-Huguet, M. & Marshall, W. D. Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles. J Hazard Mater 169, 1081-1087 (2009).
154 Cwiertny, D. M., Bransfield, S. J., Livi, K. J. T., Fairbrother, D. H. & Roberts, A. L. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environ Sci Technol 40, 6837-6843 (2006).
155 Lin, C. J., Lo, S. L. & Liou, Y. H. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. J Hazard Mater 116, 219-228 (2004).
156 Liou, Y. H., Lin, C. J., Weng, S. C., Ou, H. H. & Lo, S. L. Selective Decomposition of Aqueous Nitrate into Nitrogen Using Iron Deposited Bimetals. Environ Sci Technol 43, 2482-2488 (2009).
157 Liou, Y. H. et al. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: Effects of H-2-reducing pretreatment and copper deposition. Environ Sci Technol 39, 9643-9648 (2005).
158 Nutt, M. O., Hughes, J. B. & Wong, M. S. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39, 1346-1353 (2005).
159 Bransfield, S. J., Cwiertny, D. M., Roberts, A. L. & Fairbrother, D. H. Influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane. Environ Sci Technol 40, 1485-1490 (2006).
160 Zhu, B. W., Lim, T. T. & Feng, J. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe-0 particles supported on chitosan and silica. Chemosphere 65, 1137-1145 (2006).
161 Patel, U. & Suresh, S. Dechlorination of chlorophenols by magnesium-silver bimetallic system. J Colloid Interf Sci 299, 249-259 (2006).
162 Hsieh, S. H. & Horng, J. J. Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene. Appl Surf Sci 253, 1660-1665 (2006).
163 Jegadeesan, G., Mondal, K. & Lalvani, S. B. Arsenate remediation using nanosized modified zerovalent iron particles. Environ Prog 24, 289-296 (2005).
164 Nutt, M. O., Heck, K. N., Alvarez, P. & Wong, M. S. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B-Environ 69, 115-125 (2006).
165 Chatterjee, S., Lim, S. R. & Woo, S. H. Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chem Eng J 160, 27-32 (2010).
166 Sayles, G. D., You, G. R., Wang, M. X. & Kupferle, M. J. DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31, 3448-3454 (1997).
167 Zhu, B. W., Lim, T. T. & Feng, J. Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: Adsorption, reaction kinetics, and interfacial interactions. Environ Sci Technol 42, 4513-4519 (2008).
168 Feng, J., Zhu, B. W. & Lim, T. T. Reduction of chlorinated methanes with nano-scale Fe particles: Effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction. Chemosphere 73, 1817-1823 (2008).
169 Shin, M. C., Choi, H. D., Kim, D. H. & Baek, K. Effect of surfactant on reductive dechlorination of trichloroethylene by zero-valent iron. Desalination 223, 299-307 (2008).
170 Zheng, Z. H. et al. Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. J Hazard Mater 170, 895-901 (2009).
171 Li, Z. H. & Bowman, R. S. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ Sci Technol 31, 2407-2412 (1997).
172 Petrunin, M. A., Nazarov, A. P. & Mikhailovskii, Y. N. Adsorption of organosilicon monomers on the surface of aluminum and iron. Zh Fiz Khim+ 71, 531-534 (1997).
173 Scherer, M. M., Richter, S., Valentine, R. L. & Alvarez, P. J. J. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Env Sci Tec 30, 363-411 (2000).
174 Phillips, D. H. et al. Performance evaluation of a zerovalent iron reactive barrier: Mineralogical characteristics. Environ Sci Technol 34, 4169-4176 (2000).
175 Cornell, R. M. & Schwertmann, U. The Iron Oxide: Structure, Properties, Reactions, Occurrence and Uses. Weinheim, Germany, 445 (1996).
176 Ritter, K., Odziemkowski, M. S. & Gillham, R. W. An in situ study of the role of surface films on granular iron in the permeable iron wall technology. J Contam Hydrol 55, 87-111 (2002).
177 Mackenzie, P. D., Horney, D. P. & Sivavec, T. M. Mineral precipitation and porosity losses in granular iron columns. J Hazard Mater 68, 1-17 (1999).
178 Furukawa, Y., Kim, J. W., Watkins, J. & Wilkin, R. T. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ Sci Technol 36, 5469-5475 (2002).