研究生: |
李承憲 Li, Cheng-Xian. |
---|---|
論文名稱: |
利用刮刀塗佈製備高效率穩定三元組成有機太陽能電池 High Performance and Stability in Ternary Organic Solar Cells Fabricated by Blade Coating |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
孟心飛
Meng, Hsin-Fei 張志宇 Chang, Chih-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 刮刀塗佈 、非富勒烯 、有機太陽能電池 、三元結構 、高分子 、薄膜製程 |
外文關鍵詞: | Blade-coating, Non-fullerene, Organic solar cells, Ternary, Polymer, Thin-film process |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年之有機太陽能電池研究中,科學家積極研發非富勒烯材料,其優點為在可見光及近紅外光區有較強的吸收、易合成、低成本、能階可調及熱穩定性佳等,在經過兩、三年的發展後其效率轉換已超越富勒烯材料所製備的太陽能電池,其最高效率達14%以上,本論文即是以高分子聚合物PBDB-T及非富勒烯材料ITIC作為主動層材料並以Ca/Al作為陰極電極及LiF、ZrOx、Liq三種材料作為界面修飾層來進行穩定性的探討,其元件製程方面則是採用刮刀塗佈製作。
第一階段是以PBDB-T作為施體材料而ITIC作為受體材料的二元結構為主題,以Ca/Al作為元件陰極電極之結構效率最佳效率達8.11%,而以ZrOx作為界面修飾層之結構的元件壽命最佳,其元件在大氣環境下經過4500小時之後其最佳效率幾乎與起始效率一樣;第二階段則引入富勒烯受體PC71BM以實現更高性能的三元有機太陽能電池,以ZrOx作為界面修飾層之結構最佳效率達9.762%,元件在大氣下放置2000小時之後其元件效率幾乎與起始效率相同;第三階段則是進一步應用在有效面積為216cm2之大面積有機太陽能電池,其中二元非富勒烯元件效率最高為5.49%,而三元元件之最佳效率為6.45%。此研究成果成功地製備出大面積、高性能之非富勒烯及三元有機太陽能電池。
Recently, scientists have actively researched and developed non-fullerene materials, which advantages include strong absorption in visible region and near-infrared region, easy synthesis, low-cost, adjustable energy levels, and good thermal stability. After the years of the development, its power conversion efficiency has surpassed fullerene materials, and its maximum efficiency has reached over 14%. In this study, polymer PBDB-T and non- fullerene material ITIC are used as active layer, and Ca/Al is used as cathode electrode and LiF, ZrOx and Liq are used as interlayer. In addition, the device is fabricated by blade-coating.
The first theme is focus on binary structure with PBDB-T as the donor and ITIC as the acceptor, the resulting OSCs with Ca interlayer deliver a promising power conversion efficiency (PCE) up to 8.11%. Additionally, the devices with ZrOx interlayer also exhibit superior stability, maintaining its initial efficiency after 4500 hours under ambient air. The second part, fullerene acceptor PC71BM was introduced to achieve higher performance ternary blend organic solar cells. The devices with ZrOx interlayer also have better PCE of 9.762% and excellent stability in maintaining its initial efficiency after 2000 hours under ambient air. At last, we manufacture large-area organic solar cells with active area of 216cm2 using blade coating method, and the device of binary structure is reaches the best PCE of 5.49%. More importantly, the highest PCE of 6.45% is obtained in the device of ternary blend structure. The results of this research have successfully produced large-area, high-performance non-fullerene and ternary organic solar cells.
參考文獻
[1] CLIMATE CHANGE 2013 The Physical Science Basis: Summary for Policymakers,
Retrieved from: http://www.ipcc.ch/
[2] L. Sawin, S. B. Kristin, S.Freyr, “Advancing the Global Renewable Energy Transition”, REN21, 7, 2017.
[3] B. John, “A new silicon PV record ”, IEEE, 54, 5, 14-14, 2017.
[4] J. Britt, C. Ferekides, “Thin-film CdS/CdTe solar cell with 15.8% efficiency”, Appl. Phys. Lett., 62, 2851, 1993.
[5] D. Kearns, M. Calvin, “ Photovoltaic Effect and Photoconductivity in Laminated Organic Systems”, Chem.Phys, 29, 950-951. 1958.
[6] C. W. Tang, “Two‐layer organic photovoltaic cell” Appl. Phys. Lett, 48, 183. 1986.
[7] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 270, 5243, 1789-1791, 1995.
[8] P. T. Tsai, K. C. Lin, C. Y. Wu, C. H. Liao, M. C. Lin, Y. Q. Wong, H. F. Meng, C. Y. Chang, C. L. Wang, Y. F. Huang, S. F. Horng, H. W. Zan, Y. C. Chao,“Toward long-term stable and efficient large-area organic solar cells, ChemSusChem, 10, 2778−2787, 2017.
[9] B. A. E. Courtright, S. A. Jenekhe, “Polyethylenimineinterfacial layers in inverted organic photovoltaic devices: effects of ethoxylation and molecular weight on efficiencyand temporal stability”, ACS Appl. Mater. Interfaces, 7, 26167-27175, 2015.
[10] J. K. J. Van Duren, X. Yang, J. Loos, “Relating the morphology of poly (p‐phenylene vinylene)/methanofullerene blends to solar‐cell performance”, Adv. Funct. Mater, 14, 425. 2004.
[11] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgh, A. Hinsch, D. Meissner, N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene‐based bulk‐heterojunction solar cells”, Adv. Funct. Mater, 14, 1005 , 2004.
[12] H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, F. Schaeffler, A. Hinsch, M. Lux-Steiner, N. S. Sariciftci, “Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells”, Thin Solid Films, 587, 511, 2006.
[13] D. Gebeyehu, C. J. Brabec, F. Padinger, T. Fromherz, J. C. Hummelen, D. Badt, H. Schindler, N. Sariciftci, N. S. Synth. “ The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes” , Met, 118, 1, 2001.
[14] T. Martens, J. D. Haen, T.Munters, Z. Beelen, L. Goris, J. Manca, M. D. Olieslaeger, D. Vanderzande, L.De Schepper, R. Andriessen, “Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM”, Synth. Met , 138, 243-247, 2003.
[15] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, “Solvent Annealing Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes”, Adv. Funct. Mater, 17, 1636, 2007.
[16] V. D. Mihailetchi, H. Xie, B. de boer, L. M. Popescu, J. C. Hummelen, P. W. M. Blom, and L. J. A. Koster, “Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer”, Appl. Phys. Lett. 89, 012107, 2006.
[17] V. Shrotriya, Y. Yao, G. Li, Y. Yang, “Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance”, Appl. Phys. Lett, 89, 2006
[18] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater, 4, 864-868, 2005.
[19] L. Ye, X. Jiao, M. Zhou, S. Zhang, H.Yao, W.Zhao, A.Xia, H.Ade, J.Hou, “Manipulating Aggregation and Molecular Orientation in All‐Polymer Photovoltaic Cells”, Advanced Energy Materials, 27, 6046-6054, 2015.
[20] L. Ye, W. Jiang, X. Jiao, W. Zhao, S. Zhang, D. Qian, Z. Wang, J. Hou, “Selecting a Donor Polymer for Realizing Favorable Morphology in Efficient Non‐fullerene Acceptor‐based Solar Cells”, Advanced Energy Materials, 10, 4658-4663, 2014.
[21] Y. Lin, X. Zhan, “Designing Efficient Non‐Fullerene Acceptors by Tailoring Extended Fused‐Rings with Electron‐Deficient Groups”, 20, 5, 2015.
[22] W. C. Zhao, S. S. Li, H. F. Yao, S. Q. Zhang, Y. Zhang, B. Yang, J. H. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells”, JACS, 139, 21, 7148–7151, 2017.
[23] W. C. Zhao, S. Q. Zhang, J. H. Hou, “Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization” , Science China Chemistry, 59, 1574–1582, 2016.
[24] P. Q. Bi, T. Xiao, X. Y. Yang, M. S. Niu, Z. C. Wen, K. N. Zhang, W. Qin, S. K. So, G. H. Lu, X. T. Hao, H. Liu, “Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells” , elsevier, 46, 81-89, 2018.