研究生: |
黃建智 Huang,Chien-Chih |
---|---|
論文名稱: |
適用於超寬頻應用之高輸出率,低功率及低面積之快速傅立葉轉換處理器 A High Throughput, Low Power and Small Area Fast Fourier Transform Processor for UWB Applications |
指導教授: |
張慶元
Chang,Tsin-Yuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 快速傅利葉轉換 、正交分頻多工 、無線個人網路 、超寬頻 、多重路徑 |
外文關鍵詞: | FFT, OFDM, WPLN, UWB, Multipath |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了因應高速傳輸的需求與便利性,無線區域網路、無線都會網路以及無線個人網路已逐漸發展。針對此三種無線網路,近幾年有許多標準被提出,而新一代的標準分別為IEEE 802.11n、IEEE 802.16e以及IEEE 802.15.3a。以上三種標準皆以多頻帶正交分頻多工為其核心技術,而快速傅利葉轉換器是其中的關鍵性模組。
在這篇論文中,我們提出一個適用於超寬頻應用之高輸出率、低功率及低面積之快速傅立葉轉換處理器。所採用的是以24為底的快速傅立葉轉換演算法,是一個可以有效的地使運算過程中複數乘法的數量減到最小的快速傅立葉轉換演算法。因為以24為底的演算法有其規律性和較低的硬體複雜度,非常適合用在超大型積體電路的實現上面,尤其是在管路式架構的實現上。在設計中,我們使用常數乘法器來取代傳統的複數乘法器,以用來節省乘法運算時所消耗的龐大功率及硬體資源。我們也利用多頻率的策略來減少所提出架構中前四級運算器的功率及硬體成本。
這篇論文所提出的快速傅利葉轉換處理器是針對IEEE 802.15.3a的應用而設計,而且是利用UMC90奈米的製程來做合成及驗證。我們所提出的快速傅利葉轉換處理器可以達到1.16Gsample/s的輸出率,而所消耗的功率為25.63mW。且所設計的常數乘法器面積只相當於3.4個複數乘法器。最後整個運算器面積為0.762x0.786mm2。
[1] J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Computation of Complex Fourier Series, “Math. Computation, Vol. 19, pp. 297-301, April 1965.
[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, “Introduction to Algorithms,” MIT Press and McGraw-Hill, 1990.
[3] Y. -W. Lin, H. -Y. Liu, and C. -Y. Lee, “A 1-GS/s FFT/IFFT processor for UWB applications,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1726-1735, August 2005.
[4] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point fourier transform chip for high-speed wireless lan application using OFDM,” IEEE Journal of Solid-State Circuits, vol. 39, no. 3, pp. 484–493, Mar. 2004.
[5] H. Lee and M. Shin, “A high-speed low-complexity two-parallel radix-24 FFT/IFFT processor for UWB applications,” IEEE Asian Solid-State Circuits Conference, pp. 284–287, Nov. 2007.
[6] J.-Y. Oh and M.-S. Lim, “Area and power efficient pipeline FFT algorithm,” IEEE Workshop on Signal Processing Systems Design and Implementation, pp. 520-525, Nov. 2005.
[7] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,” in Proc. URSI Int. Symp. Signals, Systems, and Electronics, vol. 29, pp. 257–262, Oct. 1998.
[8] P. Duhamel and H. Hollmann, “Split-radix FFT algorithm,” Electronic Letters, vol. 20, No. 1, pp. 14-16, Jan. 1984.
[9] L. Jia, Y. Gao, J. Isoaho and H. Tenhunen, “A New VLSI-Oriented FFT Algorithm and Implementation,” IEEE ASIC Conference, pp. 337-341, 1998.
[10] S. -M. Kim, J. -G. Chung and K. K. Parhi, “Low error fixed-width CSD multiplier with efficient sign extension,” IEEE Trans. on Circuits and Systems, Part-II: Analog and Digital Signal Processing, vol. 50, no. 3, pp. 984–993, Dec. 2003.
[11] S. He, M. Torkelson, “Design and implementation of a 1024-point pipeline FFT processor,” IEEE Custom Integrated Circuits Conference, pp. 131–134, May. 1998.
[12] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An application specific DSP chip set for 100MHz data rates,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, vol. 4, pp. 1989-1992, Apr. 1988.
[13] J. O’Brien, J. Mather, and B. Holland, “A 200 MIPS single-chip 1k FFT processor,” in Proc. IEEE Int.. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 36, pp. 166-167, 1989.
[14] B. M. Bass, “A low-power, high-performance, 1024-point FFT processor,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 380-387, Mar. 1999.
[15] E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline FFT processors for VLSI implementation,” IEEE Trans. Comput., vol. C-33, no. 5, pp. 414-426, May 1984.
[16] A. M. Despain, “Fourier transform computer using CORDIC iterations,” IEEE Trans. Comput., vol. C-23, no. 10, pp. 993-1001, Oct. 1974.
[17] L. R. Rabiner and B. Gold, “Theory and Application of Digital Signal Processing,” Prentice-Hall, Inc., 1975.
[18] J. Lee, H. Lee, S-I. Cho, S-S. Choi, “A High-Speed, Low-Complexity Radix-24 FFT Processor for MB-OFDM UWB Systems,” in Proc. IEEE Inter. Symp. on Circuits and Systems, pp. 4719-4722.