簡易檢索 / 詳目顯示

研究生: 洪雅雯
HUNG YA-WEN
論文名稱: 白金奈米粒子夾層對鈦酸鋇薄膜電性之影響研究
指導教授: 吳泰伯
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 133
中文關鍵詞: 鈦酸鋇白金粒子局部電場集中
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗是以雙靶之射頻磁控濺鍍技術,以LaNiO3/Pt/Ti/SiO2/Si為基板,在鈦酸鋇(BaTiO3)薄膜中鍍製白金(Pt)奈米粒子夾層,形成BTO/Pt/BTO結構,再施以650℃ 3min的爐管熱處理。試著探討Pt在不同的含量、不同的anneal時間、及不同的鍍膜溫度下,對BTO薄膜特性之影響。
    當金屬粒子在均勻的電場下時,經電磁學的推導可知粒子上下方的電場強度是原電場的三倍,因而可使反向domain的成核、縱向成長及橫向擴張更為容易,Pr及Ec都會增加,使P-E curve放大。

    由實驗結果得知,經熱處理後的BTO薄膜,其BTO(100)、(200)的繞射峰強度減弱,且介電常數下降,這可能是因為熱處理的過程中薄膜產生的多邊形化(polygonization),而出現其他方位的指向,使原本完美的texture消失。

    當固定Pt的anneal時間為2min時,在Pt鍍製30s的情況下可以得到較大的Pr、Ec值,其熱處理後的2Pr≒6μC/cm2、2Ec≒300kV/cm (在電壓為16V下)。固定Pt鍍膜時間30 s,當Pt夾層anneal 2 min,或是在255℃下鍍製Pt時,也可以得到較佳的P-E特性。因為在這些條件下,適當Pt的數量及大小對於局部電場集中的效應最為明顯,而使Pr及Ec增加。


    摘要 i 致謝 ii 目錄 iii 表目錄 vi 圖目錄 vii 第一章 緒論 1 第二章 文獻回顧 4 2-1 介電性質 4 2-1-1 極化 4 2-1-2 介電常數與介電損失 5 2-2 鐵電特性 7 2-3 鐵電記憶體 9 2-3-1 鐵電記憶體之發展 10 2-3-2 鐵電記憶體之種類 11 2-3-3 鐵電記憶體之材料 13 2-3-3.1 鐵電薄膜材料 14 2-3-3.2 電極材料 15 2-4 鈦酸鋇晶體(BaTiO3)的結構與性質 18 2-4-1 鈣鈦礦結構 18 2-4-2 鈦酸鋇(BaTiO3)的相圖及結構 19 2-4-3 鈦酸鋇的電滯特性 21 2-4-4 鈦酸鋇的研究與發展 22 2-5 極化反轉的基本過程 23 2-6 在均勻的電場下導體球的電位及電場 25 2-7 局部電場集中效應對極化反轉之影響 26 2-8 金屬粒子對bulk材料P-E之影響 26 第三章 實驗流程 28 3-1 底電極之製作 28 3-1-1 Pt/Ti/SiO2/Si基板之製備 28 3-1-2 LNO薄膜之製備 28 3-2 BTO靶材之製作 29 3-3 BTO/Pt/BTO薄膜的鍍製 29 3-4 上電極的製作 29 3-5 薄膜量測分析 30 3-5-1 薄膜結構分析 30 3-5-2 成份分析 30 3-5-3 膜厚量測及表面微觀結構 30 3-5-4 電性分析 30 第四章 結果與討論 32 4-1 鈦酸鋇薄膜的成份分析 32 4-2 不同Pt夾層鍍膜時間對BTO薄膜性質之影響 32 4-2-1 晶體結構 33 4-2-2 微觀結構 35 4-2-3 遲滯曲線(P-E curve) 35 4-2-4 介電常數 37 4-2-5 漏電流(J-E curve) 38 4-3 不同Pt夾層anneal時間對BTO薄膜性質之影響 39 4-3-1 晶體結構 39 4-3-2 微觀結構 40 4-3-3 遲滯曲線(P-E curve) 40 4-3-4 介電常數 41 4-4 固定Pt鍍膜溫度(180℃),不同Pt夾層鍍膜時間對BTO薄膜性質之影響 41 4-4-1 晶體結構 41 4-4-2 遲滯曲線(P-E curve) 42 4-4-3 介電常數 42 4-5 固定Pt鍍膜時間(1min),不同Pt夾層鍍膜溫度對BTO薄膜性質之影響 43 4-5-1 晶體結構 43 4-5-2 微觀結構 44 4-5-3 遲滯曲線(P-E curve) 44 4-5-4 介電常數 45 4-6 固定Pt鍍膜時間(30s),不同Pt夾層鍍膜溫度對BTO薄膜性質之影響 45 4-6-1 晶體結構 45 4-6-2 遲滯曲線(P-E curve) 46 4-6-3 介電常數 46 4-7 固定Pt鍍膜時間(30s),不同BTO厚度對BTO薄膜性質之影響 47 4-7-1 晶體結構 47 4-7-2 遲滯曲線(P-E curve) 48 4-7-3 介電常數 48 第五章 結論 50 參考文獻 52

    1.石朗, “由MRAM/FeRAM與Flash卡應用潛力探究記憶體市場技術的新思維與新契機”, Compo Tech, Vol. 16, (2000) 100.
    2.Wu and Guozhong Cao, “Enhanced Ferroelectric Properties and Lowered Processing Temperatures of Stontinum Bismuth Niobates with Vanadium Doping”, Appl. Phys. Lett., 75(17), 25 October 1999.
    3.Tomio HIRANO, Hiroki Kawai, Hisao SUZUKI, “Effects of Excess Lead Addition on Processing of Sol-Gel Derived Lanthanum-Modified Lead Zirconate Titanate Thin Film”, Jpn. J. Appl. Phys., 38, (1999), p5343-5357.
    4.B. Yang, T. K. Song, S. Aggarwal, and R. ramesh, “Low Voltage Performance of Pb(Zr,Ti)O3 Capacitors through Donor Doping”, Appl. Phys. Lett., 71(24), 15 December 1997.
    5.C. K. Barlingay and S. K. Dey, “Dopant Compensation Mechanism and Leakage Current in Pb(Zr0.52Ti0.48)O3 Thin Films”, Thin Solid Films, 272, (1996), p112-115.
    6.HitoShi Tabata and Tomoji Kawai, “Dielectric Properties of Strained (Sr,Ca)TiO3 /(Ba,Sr)TiO3 Artificial Lattices”, Appl. Phys. Lett., 70(20), January 1997.
    7.Y. Kim, R. A. Gerhardt and A. Erbil, “Dynamical Properties of Epitaxial Ferroelectric Superlattices”, Physical Review B., 55(14), April 1997.
    8.Zaiyan Wang and Shunri ODA, “Atomic Layer-by-Layer Metal-Organic Chemical Vapor Deposition of SrTiO3 Films with a very Smooth Surface”, Jpn. J. Appl. Phys., 37, (1998), p942-947.
    9.Khian-Hooi Chew, Lye-Hock Ong, and Junaidah Osman, “Hysteresis Loops of Ferroelectric Bilayers and Superlattice”, Appl. Phys. Lett., 77(17), 23 October 2000.
    10.N. Duan, J. E. ten Elshof, and H. Verweij, “Enhancement of Dielectric and Ferroelectric Properties by Addition of Pt Particles to A Lead Zirconate Titanate Matrix”, Appl. Phys. Lett., 77(20), 13 November 2000.
    11.曾院介, “PZT-Pt奈米複合材對鐵電薄膜於低電壓操作之研究”, 國立清華大學, 碩士論文, (2002).
    12.J. K. G. Panitz and C. Hu, “Radio Frequency Sputter Tetragonal Barium Titanate Films on Silicon”, J. Vac. Sci. Technol., 16(2), (1979), p315.
    13.S. N. Chen, E. S. Ramakrishnan, and W. W. Grannemann, “Barium Titanate Thin Film Humidity Sensitive Capacitator”, J. Vac. Sci. Technol., A3(3), (1985), p678.
    14.K. Sreenivas and A. Mansingh, “Sturctural and Electrical Properties of Rf-sputtered Amorphous Barium Titanate Thin Films”, J. Appl. Phys., 62(11), (1987), p4475.
    15.M. N. Kamalasanan, N. Deepak, Kumer, and S. Chandra, “Dielectric and Ferroelectric Properties of BaTiO3 Thin Films Grown by The Sol-Gel Process”, J. Appl. Phys., 74(9), (1993), p5679.
    16.T. Hayashi, N. Ohji, K. Hirohara, T. Fukunaga and H. Maiwa, “Preparation and Properties of Ferroelectric BaTiO3 Thin Films by Sol-Gel Process”, Jpn. J. Appl. Phys., 32(9B), (1998), p4092.
    17.T. W. Kim, M. Jung, H. J. Kim and S. S. Yom, “Structural and Electrical Properties of BaTiO3 Thin Films Grown on p-InSb Substrate by Metalorganic Chemical Vapor Deposition at Low Temperature”, Appl. Phys. Lett., 62(15), (1993), p1788.
    18.D. Roy and S. B. Krupanidhi, “Pulsed Excimer Laser Ablated Barium Titanate Thin Films”, Appl. Phys. Lett., 61(17), (1992), p2057.
    19.M. G. Norton, K. P. B. Cracknell, and C. Barry Carter, “Plased Laser Deposition of Barium Titanate Thin Films”, J. Am. Ceram. Soc., 75(7), (1992), p1999.
    20.A. J. Moulson and J. M. Herbert, “Electroceramics” Materials, Properties, Applications, (1990), p52.
    21.董秀彥, “鈦酸鍶鋇薄膜之濺鍍研究”, 國立清華大學, 碩士論文, (1995).
    22.陳銘森, “鎳酸瀾電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究”, 國立清華大學, 博士論文, (1996).
    23.趙國欽, “鋯鈦酸鉛鐵電薄膜漏電流及疲勞性質之研究”, 國立清華大學, 碩士論文, (1997).
    24.Yuhuan Xu, “Ferroelectric Materials And Their Application”, Published by NorthHolland, Netherlands, (1991), p1-p36.
    25.葉明華, “脈衝雷射鍍膜法製備鈣鈦礦型鐵電薄膜之研究”, 國立清華大學,博士論文, (1994).
    26.楊清泉, “利用LaNiO3電極製備高(100)優選方向性(Pb,La)TiO3溶凝膠薄膜之研究”, 國立清華大學, 碩士論文, (1995).
    27.林家政, “添加劑(La,Mn,Nb)對溶凝膠PZT鐵電薄膜性質之影響”, 國立清華大學, 碩士論文, (1996).
    28.吳啟明, “利用濺鍍法以鎳酸瀾為電極製作動態記憶體之鈦酸鍶鋇薄膜的研究”, 國立清華大學, 博士論文, (1997).
    29.P. K. Larsen, R. Cuppens, and G. A. C. M Spierings, “Ferroelectric Memories”, 91, (1988).
    30.S. Y. Wu, “A New Ferroelectric Memory Device, Metal-Ferroelectric- Semiconductor Taransistor”, IEEE Trans. Electron Devices, ED21, (1974), 499.
    31.K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric Field-Effect Device Using Bi4Ti3O12 Film ”, J. Appl. Phys., 46(7), (1975), 2877.
    32.P. K. Larsen, R. Cuppens, and G. A. C. M. Spierings, “Ferroelectric Memories”, Ferroelectrics, 128, (1992), 265.
    33.S. Sinharoy and H. Buhay, “Investigation of Ferroelectric Thin Films into Nonvolatile Memories”, J. Vac. Sci. Technol., A10(4), (1992), 1554.
    34.J. R. Schwank, R. D. Nasby, S. L. Miller, M. S. Rodgers, and P. V. Dressendorfer, “Total–Dose Radiation-Induced Degradation of Thin Film Ferroelectric Capacitors ”, IEEE Trans. Nuclear Sci., 37(6), (1990), 1703.
    35.S. C. Lee, G. Teowee, R. D. Schrimpf, D. P. Birnie, Ⅲ, D. R. Uhlmann, and K. F. Galloway, “Total-Dose Radiation Effects on Sol-Gel Derived PZT Thin Films ”, IEEE Trans. Nuclear Sci., 39(6), (1992), 2036.
    36.T. NaKamura, Y. Fujimori, N. Izumi and A. Kamisawa, Jpn. J. Appl. Phys., 37 , (1998), p1325.
    37.Y. Katoh, S. Fujieda, Y. Hayashi, T. Kunio, IEEE 1996 Symposium on VLSI Technology Digest of Technical Papers p56.
    38.R. Moazzami, Semicond. Sci. Technol., 10, (1995), p375.
    39.R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, 1997, Chap 8, 199.
    40.R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, 1997, Chap 9, 221.
    41.K. Amanuma, T. Hase and Y. Miyasaska, “Preparation and Ferroelectric Properties of SrBi2Ta2O9 Thin Films”, Appl. Phys. Lett., 66, (1995), 221.
    42.J. K. Lee, T. K. Song, H. J. Jung, “Characteristic of SrBi2Ta2O9 Thin Films Fabricated by The RF Magnetron Sputtering Technique”, Integrated Ferroelectrics, 15, (1997), 115.
    43.B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, L. Lee and W. Jo, Nature, 401, (1999), 682.
    44.Uong Chon, Gyu-Chul Yi, and Hyun M. Jang, “Fatigue-Free Behavior of Highly Oriented Bi3.25La0.75Ta3O9(SBT) Thin Films Grown on Pt/Ti/SiO2/Si(100) by Metalorganic Solution Deposition”, Appl. Phys. Lett., 78, (2001), 658.
    45.B. Soo Lee and J. Y. Lee, Jpn. J. Appl. Phys., 38(870), (1999).
    46.賴昇志, “以LaNiO3下電極,開發PZT鐵電記憶體低溫製程之研究”, 國立清華大學, 碩士論文, (2001).
    47.李振岳, “以Pt(O)製作下電極對PZT鐵電薄膜特性之影響研究”, 國立清華大學, 碩士論文, (2001).
    48.IUT Orsay, LCR Thomson, “Pt Electrode Investigation and Electrical Properties of RF Magnetron Sputtered Pb(Zr,Ti)O3”, Microelectronic Engineering, 29, (1995), 231-234.
    49.K. Yoshikawa, T. Kimura, H. Noshiro, S. Otani, M. Yamada, Y. Furumura, “RuO2 Thin Films as Bottom Electrodes for High Dielectric Constant Materials”, J. J. A. P. , 33, (1994), p1867-869.
    50.H. N. Al-Shareef, K. D. Gifford, S. H. Rou, P. Dhren, O. Auciello, A. I. Kingon, “Electrodes for Ferroelectric Thin Film ”, Integrated, Ferroelectrics, 3, (1993), p321-332.
    51.Yong Tae, Kim, Chang Woo Lee, “Advantages of RuO2 Bottom Electrode in the Dielectric and the Leakage Characteristics of (Ba,Sr)TiO3 Capacitor”, J. J. A. P, 35, (1996), p6153-6156.
    52.Woo Sik Kim, Ji-Wan Kim, Hyung-Ho Park and Ho Nyung Lee, “Fabrication and Characterization of Pt-Oxide Electrode for Feroelectric Random Access Memory Application”, Jpn. J. Appl. Phys., 39, (2000), p7097-7099.
    53.J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, “Nanoscale Investigation of Domain Retention in Preferentially Oriented PbZr0.53Ti0.47O3 Thin Films on Pt and on LaNiO3”, Appl. Phys. Lett., 75, (1999).
    54.S. Wolf, and R. N. Tabuer, “Silicon Processing for the VLSI Era”, Lattice Press, CA Sunset Beath, (1986), 384.
    55.P. D. Hren, S. H. Rou, H. N. Al-Shareef, M. S. Ameen, O. Auciellop and A. I. Kingon, in Proc. Of the 3rd Intern, Symp. on Integr. Ferroelectrics, Colorado Spring, Co-edited by Paz Zrauzo, C. A., (1991), 612.
    56.N. R. Parikh, J. T. Stephen, M. L. Swanson and E. R. Myers, “Study of Diffusion Barrier for PZT Deposited on Si for Non-Voliate Ramdom Access Memory Technology”, in Ferroelectric Thin Films Vol.200, MRS Symp. Proc., San Francisco, 1999 edited by Myers, E. R. and Kingon, A. I., Mater. Res. Soc., Pittsburge, PA, (1990), 193.
    57.T. Hase, T. Sakuma, Y. Miyasaka, K. Hirata and N. Hosokawa, “Preparation of Pb(Zr,Ti)O3 Thin Films by Multi-Target Sputtering ”, Jpn. J. Appl. Phys., 32, (1999), 4061.
    58.T. C Tisone and J. Drobeck, “Pb(Zr,Ti)O3 Diffusion in Thin Film Ti-Au, Ti-Pd, and Ti-Pt Couples”, J. Vac Sci. and Tech., (1971), 271.
    59.R. Bruchhaus, D. Pitzer, O. Eibl, U. Scheithauer and W. Hoesler, “Investigation of Pt Bottom Electrodes for in-situ Deposited Pb(Zr,Ti)O3 (PZT) Thin Films”, Mat Res. Soc. Symp. Proc., 243, (1992), 123.
    60.K. Screenivas, I. Reancy, T. Maeder and N. Setter, “Investigation of Pt/Ti Bilayer Metallization On Silicon for Ferroelectric Thin Film Integration”, J. Appl. Phys., 75(1), (1994), 232.
    61.陳美玲, “DRAM應用之鋯鈦酸鋇介電薄膜磁控濺鍍之研究”, 國立清華大學,碩士論文, (1996).
    62.楊清泉, “利用LaNiO3電極置備高(100)優選方向性(Pb,La)TiO3溶凝膠薄膜之研究”, 國立清華大學,碩士論文, (1995).
    63.T. B. Wu, J. M. Wu, C. M. Wu, M. J. Shyu, M. S. Chen, J. S. Dong, and C. C. Yang, “Effects of Sputtered-Deposited LaNiO3 Electrode On The Deposition and Properties of Ferroelectric Thin Films”, Mat. Res. Soc. Symp. Proc., 433, (1996), 169.
    64.C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu and T. B. Wu, “Preparation of (100)-Oriented Metallic LaNiO3 Thin Films on Si Substrate by RF Magnetron Sputtering for The Growth of Textured PZT”, Appl. Phys. Lett., 66(20), (1995), 2643.
    65.吳朗, “電子陶瓷-介電陶瓷”, 全欣資訊圖書.
    66.T. R. Shrout and A. Halliyal , Am. Ceram. Soc. Bull,66,
    (1987), p704.
    67.陳俊伯, “利用超音波噴霧裂解法沉積鈦酸鋇薄膜”, 國立清華大學,碩士論文, (2000).
    68.J. F. Shackelford, Introduction to Materials Science for Engineering, 1990, p516.
    69.Hari Singh Nalwa, “Ferroelectric and Dielectric Thin Films”, Handbook of Thin Film Materials, Volume 3.
    70.C. Feldman, “Formation of Thin Films of BaTiO3 by Evaporation”, Rev. Scien. Instr. ,26(5), (1995), p463.
    71.Q. X. Jia, Z. Q. Shi, and W. A. Anderson, Thin Solid Films, 209, (1992), 230.
    72.Z. Q. Shi, Q. X. Jia, and and W. A. Anderson, J. Vac. Sci. Technol., A 11, (1993), 1411.
    73.Z. Q. Shi, Q. X. Jia, and and W. A. Anderson, J. Vac. Sci. Technol., A 10, (1992), 733.
    74.P. C. Van Buskirk, R. Gardiner, P. S. Kirlin, and S. Krupanidhi, J. Vac. Sci. Technol., A 10, (1992), 1578.
    75.M. H. Yeh, Y. C. Liu, K. S. Liu, I. N. Lin, and J. Y. Lee, J. Appl. Phys., 74, (1993), 2143.
    76.T. Hayashi, N. Oji, and H. Maiwa, Jpn. J. Appl. Phys., 33, (1994), 5277.
    77.鍾維烈, “鐵電體物理學”, 科學出版社, 1996, p294-296.
    78.David K. Cheng, “Field and Wave Electromagnetics 2/e”, Addison-Wesley.
    79.Robert E. Read-Hill, “Physical Metallurgy Principles”.
    80.J. Lee and C.H. Choi, B. H. Park and T. W. Noh, J. K. Lee, “Built-in Voltages and Asymmetric Polarization Switching in Pb(Zr,Ti)O3 Thin Film Capacitors”, Appl. Phys. Lett., 72, 3380.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE