研究生: |
林楷泰 Lin, Kai-Tai |
---|---|
論文名稱: |
利用小角度X光散射結合分子動力學模擬研究水溶液中甘胺酸-精胺酸二胜肽重複序列之結構及其與脫氧核醣核酸之複合體結構 Solution Structures of Glycine-Arginine Dipeptide Repeats and their complex with a deoxyribonucleic acid, as Studied by Small-Angle X-Ray Scattering and Molecular Dynamics Simulation |
指導教授: |
鄭有舜
Jeng, U-Ser |
口試委員: |
蘇安仲
Su, An-Chung 陳韻如 Chen, Yun-Ru 葉奕琪 Yeh, Yi-Qi 施怡之 Shih, Orion |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 小角度X光散射 、分子動力學模擬 、甘胺酸-精胺酸二胜肽重複序列 、水溶液結構 、脫氧核醣核酸 |
外文關鍵詞: | Small-Angle X-Ray scattering, molecular dynamics simulation, Glycine-Arginine dipeptide repeats, solution structure, DNA |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在患有額顳葉失智症 (Frontotemporal Dementia, FTD) 及肌萎縮側索硬化症( Amyotrophic Lateral Sclerosis, ALS ) 之家族性遺傳疾病之患者中發現,大部分患者的大腦內及脊髓中的未解碼區域C9ORF72 (Chromosome 9 open reading frame 72) 基因帶有異常的六核苷酸擴張 (Hexanucleotide expansion, GGGGCC),經過非ATG起始之轉譯 (non-ATG initiated translation) 產生大量二胜肽重複序列 (Dipeptide Repeats, DPRs)片段。DPRs包含甘胺酸-精胺酸 (poly Glycine-Arginine, (GR)n)、甘胺酸-丙胺酸 (poly Glycine-Alanine, (GA)n)、甘胺酸-脯胺酸 (poly Glycine-Proline, (GP)n)、脯胺酸-精胺酸 (poly Proline- Arginine, (PR)n)、脯胺酸-丙胺酸 (poly Proline-Alanine, (PA)n),不同序列片段與病灶機制之間關係仍有許多未知的地方。本研究主要使用水溶液小角度X光散射 (Bio-SAXS) 結合分子結構模擬程式探討水溶液中甘胺酸-精胺酸 (poly Glycine-Arginine, (GR)n) 二胜肽在不同序列長度下的結構變化,其中n = 5、10、15、20、25與30,以及 (GR)n 混合以腺嘌呤-胞嘧啶之含氮鹼基 (AC)3 組成的單股DNA (ssDNA) 複合體結構,作為理解 (GR)n 細胞毒性之基礎。第一部份,由我們建立的水溶液小角度X光散射結合分子動力學模擬之數據分析法來解析在溶液下各別 (GR)n 的結構。由結果得知,在n值趨近20時,(GR)n 會形成類似 α螺旋 (α-helix) 結構,但其螺旋間距為6.2 ± 0.1 Å較 螺旋間距5.4 Å寬鬆,故暫稱為軟螺旋結構。此結構特徵歸因於 (GR)n 精胺酸之氫鍵吸引作用及側鏈正電荷排斥的平衡結果。透過圓二色性的分析 (Circular Dichroism) 也發現(GR)n 隨n值而越趨顯著的類似二級結構訊號。此與先前結果相呼應。第二部分,我們結合SAXS、UV-Vis吸收光譜及折射率的同步量測,解析出 (AC)3 與 (GR)25 ,在水溶液中可穩定存在的結合比為1:1;此複合體的結構迴旋半徑Rg = 17.9 ± 0.6 Å,僅略高於 (GR)25 的Rg値16.5 ± 0.2 Å。分子動力學模擬與SAXS數據的綜合分析結果顯示,(AC)3選擇性的吸附與 (GR)25較鬆散之N端 (N-terminal) 形成半穩定 (metastable) 結構。
Segments of abnormal dipeptide repeats (DPRs) are often found, as signature symptom products, from the transcription of an infected gene chromosome 9 open reading frame 72 (C9ORF72) in the brain or spinal cord of the patients of familial frontotemporal dementia and amyotrophic lateral sclerosis. Such dipeptide repeats include poly Glycine-Arginine (GR)n, poly Glycine-Alanine, poly Glycine-Proline, poly Proline-Arginine, and poly Proline-Alanine, which have been associated with cell toxicity of unclarified mechanism. This study aims to provide structural hints on the mechanism of (GR)n cell toxicity on the basis of the solution structures of (GR)n, with n = 5, 10, 15, 20, 25, and 30, and their associations with single strand DNA of selected repeating base pairs in solution, using combined small-angle X-ray scattering (SAXS), UV-vis absorption, and refraction index (RI) measurements, further coupled with molecular structure simulation. In the first part, a combined analysis of SAXS-Molecular structural simulation is developed to reveal the solution structures of neat (GR)n. The result shows that (GR)n forms a loose helical structure of an extended conformation when n is near or above a critical value nc of 20, with a mean helical pitch length of 6.2 Å larger than that (5.2 Å) of the well-known helix. Consistently, circular dichroism result also suggests a trend of developing secondary structure from random coils in solution with the increase of n value. In the second part of the study, an integrated methodology combining SAXS, UV-vis absorption, and refractive index measurements is developed to resolve the composition and structure of (GR)n complexed with a specific single strand DNA, (AC)n. The (AC)3-(GR)25 complex is found to be stable in solution only at 1:1 association ratio, with a radius of gyration Rg = 17.90.6 Å, slightly larger than 16.5 0.2 Å of the neat the (GR)25. Combined analysis of molecular dynamics simulation and the SAXS data reveals a metastable complex conformation with the (AC)3 selectively binding to the loose N-terminal of (GR)25.
1. DeJesus-Hernandez, M.; Mackenzie, I. R.; Boeve, B. F.; Boxer, A. L.; Baker, M.; Rutherford, N. J.; Nicholson, A. M.; Finch, N. A.; Flynn, H.; Adamson, J., Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011, 72, 245-256.
2. Renton, A. E.; Majounie, E.; Waite, A.; Simón-Sánchez, J.; Rollinson, S.; Gibbs, J. R.; Schymick, J. C.; Laaksovirta, H.; Van Swieten, J. C.; Myllykangas, L., A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011, 72, 257-268.
3. Rohrer, J. D.; Isaacs, A. M.; Mizielinska, S.; Mead, S.; Lashley, T.; Wray, S.; Sidle, K.; Fratta, P.; Orrell, R. W.; Hardy, J., C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. The Lancet Neurology 2015, 14, 291-301.
4. Belzil, V. V.; Bauer, P. O.; Prudencio, M.; Gendron, T. F.; Stetler, C. T.; Yan, I. K.; Pregent, L.; Daughrity, L.; Baker, M. C.; Rademakers, R., Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta neuropathologica 2013, 126, 895-905.
5. Fratta, P.; Poulter, M.; Lashley, T.; Rohrer, J. D.; Polke, J. M.; Beck, J.; Ryan, N.; Hensman, D.; Mizielinska, S.; Waite, A. J., Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta neuropathologica 2013, 126, 401-409.
6. Waite, A. J.; Bäumer, D.; East, S.; Neal, J.; Morris, H. R.; Ansorge, O.; Blake, D. J., Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiology of aging 2014, 35, 1779. e5-1779. e13.
7. Donnelly, C. J.; Zhang, P.-W.; Pham, J. T.; Haeusler, A. R.; Mistry, N. A.; Vidensky, S.; Daley, E. L.; Poth, E. M.; Hoover, B.; Fines, D. M., RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 2013, 80, 415-428.
8. Lee, Y.-B.; Chen, H.-J.; Peres, J. N.; Gomez-Deza, J.; Attig, J.; Štalekar, M.; Troakes, C.; Nishimura, A. L.; Scotter, E. L.; Vance, C., Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell reports 2013, 5, 1178-1186.
9. Zu, T.; Gibbens, B.; Doty, N. S.; Gomes-Pereira, M.; Huguet, A.; Stone, M. D.; Margolis, J.; Peterson, M.; Markowski, T. W.; Ingram, M. A., Non-ATG–initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences 2011, 108, 260-265.
10. Zu, T.; Liu, Y.; Bañez-Coronel, M.; Reid, T.; Pletnikova, O.; Lewis, J.; Miller, T. M.; Harms, M. B.; Falchook, A. E.; Subramony, S., RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences 2013, 110, E4968-E4977.
11. Mann, D. M.; Rollinson, S.; Robinson, A.; Callister, J. B.; Thompson, J. C.; Snowden, J. S.; Gendron, T.; Petrucelli, L.; Masuda-Suzukake, M.; Hasegawa, M., Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta neuropathologica communications 2013, 1, 68.
12. Mori, K.; Weng, S.-M.; Arzberger, T.; May, S.; Rentzsch, K.; Kremmer, E.; Schmid, B.; Kretzschmar, H. A.; Cruts, M.; Van Broeckhoven, C., The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013, 339, 1335-1338.
13. May, S.; Hornburg, D.; Schludi, M. H.; Arzberger, T.; Rentzsch, K.; Schwenk, B. M.; Grässer, F. A.; Mori, K.; Kremmer, E.; Banzhaf-Strathmann, J., C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta neuropathologica 2014, 128, 485-503.
14. Yamakawa, M.; Ito, D.; Honda, T.; Kubo, K.-i.; Noda, M.; Nakajima, K.; Suzuki, N., Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Human molecular genetics 2014, 24, 1630-1645.
15. Schludi, M. H.; May, S.; Grässer, F. A.; Rentzsch, K.; Kremmer, E.; Küpper, C.; Klopstock, T.; Alliance, B. B. B.; Arzberger, T.; Edbauer, D., Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta neuropathologica 2015, 130, 537-555.
16. Darling, A. L.; Breydo, L.; Rivas, E. G.; Gebru, N. T.; Zheng, D.; Baker, J. D.; Blair, L. J.; Dickey, C. A.; Koren III, J.; Uversky, V. N., Repeated repeat problems: Combinatorial effect of C9orf72-derived dipeptide repeat proteins. International journal of biological macromolecules 2019, 127, 136-145.
17. Chang, Y.-J.; Jeng, U.-S.; Chiang, Y.-L.; Hwang, S.; Chen, Y.-R., The glycine-alanine dipeptide repeat from C9orf72 hexanucleotide expansions forms toxic amyloids possessing cell-to-cell transmission properties. Journal of Biological Chemistry 2016, 291, 4903-4911.
18. Flores, B. N.; Dulchavsky, M. E.; Krans, A.; Sawaya, M. R.; Paulson, H. L.; Todd, P. K.; Barmada, S. J.; Ivanova, M. I., Distinct C9orf72-associated dipeptide repeat structures correlate with neuronal toxicity. PloS one 2016, 11, e0165084.
19. Freibaum, B. D.; Taylor, J. P., The role of dipeptide repeats in C9ORF72-related ALS-FTD. Frontiers in molecular neuroscience 2017, 10, 35.
20. Mizielinska, S.; Grönke, S.; Niccoli, T.; Ridler, C. E.; Clayton, E. L.; Devoy, A.; Moens, T.; Norona, F. E.; Woollacott, I. O.; Pietrzyk, J., C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014, 345, 1192-1194.
21. Wen, X.; Tan, W.; Westergard, T.; Krishnamurthy, K.; Markandaiah, S. S.; Shi, Y.; Lin, S.; Shneider, N. A.; Monaghan, J.; Pandey, U. B., Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014, 84, 1213-1225.
22. Freibaum, B. D.; Lu, Y.; Lopez-Gonzalez, R.; Kim, N. C.; Almeida, S.; Lee, K.-H.; Badders, N.; Valentine, M.; Miller, B. L.; Wong, P. C., GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015, 525, 129.
23. Lee, K.-H.; Zhang, P.; Kim, H. J.; Mitrea, D. M.; Sarkar, M.; Freibaum, B. D.; Cika, J.; Coughlin, M.; Messing, J.; Molliex, A., C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016, 167, 774-788. e17.
24. Lin, Y.; Mori, E.; Kato, M.; Xiang, S.; Wu, L.; Kwon, I.; McKnight, S. L., Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 2016, 167, 789-802. e12.
25. Huntley, M. A.; Golding, G. B., Simple sequences are rare in the Protein Data Bank. Proteins: Structure, Function, and Bioinformatics 2002, 48, 134-140.
26. Uversky, V. N., Natively unfolded proteins: a point where biology waits for physics. Protein science 2002, 11, 739-756.
27. Brangwynne, C. P.; Tompa, P.; Pappu, R. V., Polymer physics of intracellular phase transitions. Nature Physics 2015, 11, 899.
28. Schmidt, H. B.; Goerlich, D., Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends in biochemical sciences 2016, 41, 46-61.
29. Jovičić, A.; Mertens, J.; Boeynaems, S.; Bogaert, E.; Chai, N.; Yamada, S. B.; Paul III, J. W.; Sun, S.; Herdy, J. R.; Bieri, G., Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nature neuroscience 2015, 18, 1226.
30. Boeynaems, S.; Bogaert, E.; Michiels, E.; Gijselinck, I.; Sieben, A.; Jovičić, A.; De Baets, G.; Scheveneels, W.; Steyaert, J.; Cuijt, I., Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Scientific reports 2016, 6, 20877.
31. Yang, D.; Abdallah, A.; Li, Z.; Lu, Y.; Almeida, S.; Gao, F.-B., FTD/ALS-associated poly (GR) protein impairs the Notch pathway and is recruited by poly (GA) into cytoplasmic inclusions. Acta neuropathologica 2015, 130, 525-535.
32. Yeh, Y.-Q.; Liao, K.-F.; Shih, O.; Shiu, Y.-J.; Wu, W.-R.; Su, C.-J.; Lin, P.-C.; Jeng, U.-S., Probing the acid-induced packing structure changes of the molten globule domains of a protein near equilibrium unfolding. The journal of physical chemistry letters 2017, 8, 470-477.
33. Skou, S.; Gillilan, R. E.; Ando, N., Synchrotron-based small-angle X-ray scattering of proteins in solution. Nature protocols 2014, 9, 1727.
34. Roe, R.-J.; Roe, R., Methods of X-ray and neutron scattering in polymer science. Oxford university press New York: 2000; Vol. 739.
35. Putnam, C. D.; Hammel, M.; Hura, G. L.; Tainer, J. A., X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly reviews of biophysics 2007, 40, 191-285.
36. Receveur-Bréchot, V.; Durand, D., How random are intrinsically disordered proteins? A small angle scattering perspective. Current Protein and Peptide Science 2012, 13, 55-75.
37. Franke, D.; Petoukhov, M.; Konarev, P.; Panjkovich, A.; Tuukkanen, A.; Mertens, H.; Kikhney, A.; Hajizadeh, N.; Franklin, J.; Jeffries, C., ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of applied crystallography 2017, 50, 1212-1225.
38. Konarev, P. V.; Volkov, V. V.; Sokolova, A. V.; Koch, M. H.; Svergun, D. I., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of applied crystallography 2003, 36, 1277-1282.
39. Svergun, D., Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of applied crystallography 1992, 25, 495-503.
40. Svergun, D.; Barberato, C.; Koch, M. H., CRYSOL–a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. Journal of applied crystallography 1995, 28, 768-773.
41. Franke, D.; Svergun, D. I., DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. Journal of applied crystallography 2009, 42, 342-346.
42. Svergun, D. I., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophysical journal 1999, 76, 2879-2886.
43. Svergun, D. I.; Petoukhov, M. V.; Koch, M. H., Determination of domain structure of proteins from X-ray solution scattering. Biophysical journal 2001, 80, 2946-2953.
44. Volkov, V. V.; Svergun, D. I., Uniqueness of ab initio shape determination in small-angle scattering. Journal of applied crystallography 2003, 36, 860-864.
45. Kozin, M. B.; Svergun, D. I., Automated matching of high-and low-resolution structural models. Journal of applied crystallography 2001, 34, 33-41.
46. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC bioinformatics 2008, 9, 40.
47. Roy, A.; Kucukural, A.; Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols 2010, 5, 725.
48. Yang, J.; Zhang, Y., I-TASSER server: new development for protein structure and function predictions. Nucleic acids research 2015, 43, W174-W181.
49. Kaufmann, K. W.; Lemmon, G. H.; DeLuca, S. L.; Sheehan, J. H.; Meiler, J., Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 2010, 49, 2987-2998.
50. Sønderby, P.; Rinnan, Å.; Madsen, J. J.; Harris, P.; Bukrinski, J. T.; Peters, G. n. H., Small-angle X-ray scattering data in combination with RosettaDock improves the docking energy landscape. Journal of chemical information and modeling 2017, 57, 2463-2475.
51. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. Springer Science & Business Media: 2013.
52. Aitken, A.; Learmonth, M. P., Protein determination by UV absorption. In The protein protocols handbook, Springer: 2009; pp 3-6.
53. Cavaluzzi, M. J.; Borer, P. N., Revised UV extinction coefficients for nucleoside‐5′‐monophosphates and unpaired DNA and RNA. Nucleic acids research 2004, 32, e13-e13.
54. Zhao, H.; Brown, P. H.; Schuck, P., On the distribution of protein refractive index increments. Biophysical journal 2011, 100, 2309-2317.
55. Nobbmann, U., Refractive Index Increment dndc for proteins, polymers SLS. 2013.
56. Williams, K. WHAT IS A DN/DC VALUE AND WHY IS IT IMPORTANT FOR GPC/SEC?|Materials Talks. https://www.materials-talks.com/blog/2018/08/22/what-is-a-dndc-value-and-why-is-it-important-for-gpcsec/.
57. Yamashita, H.; Kato, T.; Oba, M.; Misawa, T.; Hattori, T.; Ohoka, N.; Tanaka, M.; Naito, M.; Kurihara, M.; Demizu, Y., Development of a cell-penetrating peptide that exhibits responsive changes in its secondary structure in the cellular environment. Scientific reports 2016, 6, 33003.