研究生: |
張博宇 Chang, Bo-Yu. |
---|---|
論文名稱: |
以飛秒瞬態吸收光譜研究1-己烯/四氰基乙烯與苯甲腈/四氰基乙烯錯合物電荷轉移態緩解動力學 Femtosecond Transient Absorption Spectroscopic Studies of Charge-Transfer State Relaxation Dynamics of 1-Hexene/Tetracyanoethylene and Benzonitrile/Tetracyanoethylene Complexes |
指導教授: |
鄭博元
Cheng, Po-Yuan |
口試委員: |
陳益佳
Chen, I-Chia 劉振霖 Liu, Chen-Lin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 瞬態吸收光譜法 、電荷轉移 、電子給體受體錯合物 、電荷轉移態 |
外文關鍵詞: | transient absorption, charge transfer, electron donor-acceptor complexes, charge transfer state |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用實驗室自行架設的飛秒瞬態吸收光譜儀(transient absorption, TA)及一套自動化數據擷取電腦程式,研究電子給體-受體(electron donor-acceptor, EDA)錯合物中的分子間電荷轉移動力學行為。本論文分為兩個主題:第一個是觀察直接激發烯烴類1-己烯/四氰基乙烯 (1-hexene/tetracyanoethylene, Hex/TCNE)錯合物的電荷轉移(charge transfer, CT)態後的電荷轉移動力學;第二個是觀察直接激發芳香族苯甲腈/四氰基乙烯(benzonitrile/tetracyanoethylene, PhCN/TCNE)錯合物的CT態後的電荷轉移動力學。在第一個主題中,我們觀察到四氰基乙烯陰離子(TCNE)的瞬態吸收光譜及其時間變化之行為,並與本實驗室前人研究之BZ/TCNE錯合物CT態電荷轉移動力學進行比較。我們觀察到激發錯合物CT態後,錯合物會先進行溶劑緩解(約0.5 ps),並接著進行電荷再結合(charge recombination, CR)的過程(約3 ps)。比較Hex/TCNE以及BZ/TCNE的瞬態吸收光譜我們更確定實驗室前人對於苯二聚體陽離子((BZ)2+)的指認,並且推測在Hex/TCNE溶液中並沒有(Hex)2+的形成。在第二個主題中,我們觀察到TCNE、苯甲腈陽離子(PhCN+)以及苯甲腈二聚體陽離子((PhCN)2+)的瞬態吸收光譜及其時間變化之行為。我們發現錯合物CT態會先進行較快的溶劑緩解與振動緩解過程,接著為較慢的CR反應,且其CR速率隨溶劑中PhCN比例改變有顯著的變化。在與BZ/TCNE的比較中,我們驚訝地發現在PhCN/TCNE系統中D+A型錯合物的CR速率比(DD)+A型錯合物的CR速率快,與BZ/TCNE系統中的趨勢相反,其可能原因為系統的反應自由能(-〖ΔG〗^0)與電子耦合強度(HAB)在不同系統中的影響程度不同。我們也發現在相似溶劑條件下,不論是D+A型或(DD)+A型錯合物的CR速率在PhCN/TCNE系統中都較慢,其可能原因為系統的-〖ΔG〗^0較大並且HAB較弱導致CR速率較慢。
We study the charge-transfer (CT) dynamics of the electron donor-acceptor (EDA) complexes with broadband femtosecond transient absorption (TA) spectroscopy. The thesis is mainly divided into two topics. In the first topic, we directly excite the CT state of 1-hexene/tetracyanoethylene (Hex/TCNE) complexes to observe their relaxation dynamics and compare the results with the previously-studied BZ/TCNE complexes in our laboratory. We observed TA spectra of TCNE anion (TCNE) and their temporal behaviors. By analyzing their time-dependent behaviors, we found that after exciting the CT state of Hex/TCNE complexes, the excited state complexes undergo rapid solvation relaxation, followed by a slower charge recombination (CR) reaction. Comparing with the results of previously-studied BZ/TCNE system, we did not observe the formation of dimer cation in Hex/TCNE system, but we found that the CR rate of Hex/TCNE complex is faster than those of BZ/TCNE complexes by one to two orders of magnitude due to the enhanced electronic coupling strength (HAB). In the second topic, we excite the CT state of benzonitrile/tetracyanoethylene (PhCN/TCNE) complexes. We observe TA spectra of TCNE, benzonitrile cation (PhCN)+ and benzonitrile dimer cation ((PhCN)2+). By analyzing their time-dependent behaviors, we found that after exciting the CT state of PhCN/TCNE complexes, the excited state complexes undergo rapid solvation and vibrational relaxation, followed by a slower CR reaction, which is strongly dependent on the donor concentrations in solutions. Comparing with the CR process of previously-studied BZ/TCNE complexes, we noticed a different trend in the CR rate of the PhCN/TCNE complexes as the donor concentration increases. Surprisingly, in contrast to BZ/TCNE complexes, the CR rate of the D+Atype is faster than (DD)+Atype in PhCN/TCNE complexes probably due to the different in HAB and reaction free enengy (-〖ΔG〗^0) in the two systems. On top of that, the CR rates are slower in PhCN/TCNE complexes than in BZ/TCNE complexes in similar solvent environments for both D+Aor (DD)+Atypes. The possible reason is related to a greater -〖ΔG〗^0 and a weaker HAB in PhCN/TCNE complexes, leading to their slower CR rates.
1. Sit, P.-L.; Cococcioni, M.; Marzari, N., Realistic quantitative descriptions of
electron transfer reactions: Diabatic free-energy surfaces from first-principles
molecular dynamics. J. Phys. Rev. Lett. 2006, 97, 028303.
2. Sharma, K.; Sharma, V.; Sharma, S. S., Dye-Sensitized Solar Cells: Fundamentals
and Current Status. Nanoscale Res. Lett. 2018, 13, 381.
3. Kuznetsov, A. M.; Ulstrup, J., Electron transfer in chemistry and biology. Wiley,
Chichester: 1999.
4. Barbara, P. F.; Meyer, T. J.; Ratner, M. A., Contemporary issues in electron transfer
research. J. Phys. Chem. 1996, 100, 13148-13168.
5. Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C., Dual Intramolecular ChargeTransfer Fluorescence Derived from a Phenothiazine-Triphenyltriazine Derivative.
J. Phys. Chem. C 2014, 118, 15985-15994.
6. Fukuzumi, S., New perspective of electron transfer chemistry. J. Org. Biomol. Chem.
2003, 1, 609-620.
7. Chakrabarty, D.; Seth, D.; Chakraborty, A.; Sarkar, N. J. T. J. o. P. C. B.,
Dynamics of solvation and rotational relaxation of coumarin 153 in ionic liquid
confined nanometer-sized microemulsions. J. Phys. Chem. B 2005, 109, 5753-5758.
8. Ghosh, S.; Mondal, S. K.; Sahu, K.; Bhattacharyya, K., Ultrafast electron
transfer in a nanocavity. Dimethylaniline to coumarin dyes in hydroxypropyl γcyclodextrin. J. Phys. Chem. A 2006, 110, 13139-13144.
9. Weller, A., Exciplex and radical pairs in photochemical electron transfer. J Pure Appl.
Chem. 1982, 54, 1885-1888.
10. Rehm, D.; Weller, A., Kinetics of fluorescence quenching by electron and H‐atom
transfer. Isr. J. Chem. 1970, 8, 259-271.
11. Morandeira, A.; Fürstenberg, A.; Pagès, S.; Lang, B.; Vauthey, E., Ultrafast
spectroscopy on bimolecular photoinduced electron transfer reactions. J Spectr.
2004, 17, 15.
12. Marcus, R. A. J. T. J. o. c. p., On the theory of oxidation‐reduction reactions
involving electron transfer. 1956, 24, 966-978.
13. Kroon, J.; Oevering, H.; Verhoeven, J. W.; Warman, J. M.; Oliver, A. M.;
Paddon-Row, M. N., Temperature effects on intramolecular electron transfer kinetics
under" normal"," inverted", and" nearly optimal" conditions. J. Phys. Chem. 1993,
97, 5065-5069.
14. Miller, J. R.; Calcaterra, L.; Closs, G., Intramolecular long-distance electron
transfer in radical anions. The effects of free energy and solvent on the reaction rates.
J. Am. Chem. Soc. 1984, 106, 3047-3049.
15. Mulliken, R. S., Molecular compounds and their spectra. III. The interaction of
electron donors and acceptors. J. Phys. Chem. 1952, 56, 801-822.
16. 鄭亭菩. 以超快時間解析螢光光譜研究烯烴類-四氰基乙烯錯合物之分子間電
荷轉移動力學. 國立清華大學, 2017.
17. 温逸凡. 以超快時間解析光學克爾光閘螢光光譜研究非甲基取代苯-四氰基乙
烯錯合物分子間電荷轉移動態學. 國立清華大學, 新竹市, 2017.
18. Chiu, C. C.; Hung, C. C.; Cheng, P. Y., Ultrafast Charge Recombination Dynamics
in Ternary Electron Donor-Acceptor Complexes: (Benzene)(2)-Tetracyanoethylene
Complexes. J Phys Chem B 2016, 120, 12390-12403.
19. 廖翊凱. 以飛秒瞬態吸收光譜研究苯/四氰基乙烯錯合物之電荷轉移態與局部
激發態之電荷轉移動力學. 國立清華大學, 2019.
20. 陳冠宇. 以飛秒瞬態吸收光譜研究苯/四氰基乙烯錯合物 於極性溶劑中電荷
轉移態與局部激發態之電荷轉移動力學. 國立清華大學, 2020.
21. Jeanmaire, D. L.; Suchanski, M. R.; Van Duyne, R. P., Resonance Raman
spectroelectrochemistry. I. Tetracyanoethylene anion radical. J. Am. Chem. Soc.
1975, 97, 1699-1707.
22. Wynne, K.; Galli, C.; Hochstrasser, R., Ultrafast charge transfer in an electron
donor–acceptor complex. J. Chem. Phys. 1994, 100, 4797-4810.
23. Lorenc, M.; Ziolek, M.; Naskrecki, R.; Karolczak, J.; Kubicki, J.;
Maciejewski, A., Artifacts in femtosecond transient absorption spectroscopy. J. Appl.
Phys. B 2002, 74 (1), 19-27.
24. Mehnert, R.; Brede, O.; Cserep, G., Pulse radiolysis investigation of alkene radical
cations. Radiat. Phys. Chem. 1985, 26, 353-363.
25. Iyer, E. S. S.; Sadybekov, A.; Lioubashevski, O.; Krylov, A. I.; Ruhman, S.,
Rewriting the Story of Excimer Formation in Liquid Benzene. J. Phys. Chem. A 2017,
121, 1962-1975.
26. Xu, H.; Johnson, P. M.; Sears, T. J., Photoinduced Rydberg ionization spectroscopy
of the B̃state of benzonitrile cation. J. Chem. Phys. 2006, 125, 164331.
27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.;
Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts,
R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.;
Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.;
Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.;
Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota,
K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.;
Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;
Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.
W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.
Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
28. Chai, J.-D.; Head-Gordon, M., Long-range corrected hybrid density functionals with
damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10,
6615-6620.
29. Burns, L. A.; Vázquez-Mayagoitia, A.; Sumpter, B. G.; Sherrill, C. D., Densityfunctional approaches to noncovalent interactions: a comparison of dispersion
corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized
functionals. J. Chem. Phys. 2011, 134, 084107.
30. Li, A.; Muddana, H. S.; Gilson, M. K., Quantum Mechanical Calculation of
Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT
Approaches. J. Chem. Theory Comput. 2014, , 1563-1575.