簡易檢索 / 詳目顯示

研究生: 張博宇
Chang, Bo-Yu.
論文名稱: 以飛秒瞬態吸收光譜研究1-己烯/四氰基乙烯與苯甲腈/四氰基乙烯錯合物電荷轉移態緩解動力學
Femtosecond Transient Absorption Spectroscopic Studies of Charge-Transfer State Relaxation Dynamics of 1-Hexene/Tetracyanoethylene and Benzonitrile/Tetracyanoethylene Complexes
指導教授: 鄭博元
Cheng, Po-Yuan
口試委員: 陳益佳
Chen, I-Chia
劉振霖
Liu, Chen-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 瞬態吸收光譜法電荷轉移電子給體受體錯合物電荷轉移態
外文關鍵詞: transient absorption, charge transfer, electron donor-acceptor complexes, charge transfer state
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用實驗室自行架設的飛秒瞬態吸收光譜儀(transient absorption, TA)及一套自動化數據擷取電腦程式,研究電子給體-受體(electron donor-acceptor, EDA)錯合物中的分子間電荷轉移動力學行為。本論文分為兩個主題:第一個是觀察直接激發烯烴類1-己烯/四氰基乙烯 (1-hexene/tetracyanoethylene, Hex/TCNE)錯合物的電荷轉移(charge transfer, CT)態後的電荷轉移動力學;第二個是觀察直接激發芳香族苯甲腈/四氰基乙烯(benzonitrile/tetracyanoethylene, PhCN/TCNE)錯合物的CT態後的電荷轉移動力學。在第一個主題中,我們觀察到四氰基乙烯陰離子(TCNE)的瞬態吸收光譜及其時間變化之行為,並與本實驗室前人研究之BZ/TCNE錯合物CT態電荷轉移動力學進行比較。我們觀察到激發錯合物CT態後,錯合物會先進行溶劑緩解(約0.5 ps),並接著進行電荷再結合(charge recombination, CR)的過程(約3 ps)。比較Hex/TCNE以及BZ/TCNE的瞬態吸收光譜我們更確定實驗室前人對於苯二聚體陽離子((BZ)2+)的指認,並且推測在Hex/TCNE溶液中並沒有(Hex)2+的形成。在第二個主題中,我們觀察到TCNE、苯甲腈陽離子(PhCN+)以及苯甲腈二聚體陽離子((PhCN)2+)的瞬態吸收光譜及其時間變化之行為。我們發現錯合物CT態會先進行較快的溶劑緩解與振動緩解過程,接著為較慢的CR反應,且其CR速率隨溶劑中PhCN比例改變有顯著的變化。在與BZ/TCNE的比較中,我們驚訝地發現在PhCN/TCNE系統中D+A型錯合物的CR速率比(DD)+A型錯合物的CR速率快,與BZ/TCNE系統中的趨勢相反,其可能原因為系統的反應自由能(-〖ΔG〗^0)與電子耦合強度(HAB)在不同系統中的影響程度不同。我們也發現在相似溶劑條件下,不論是D+A型或(DD)+A型錯合物的CR速率在PhCN/TCNE系統中都較慢,其可能原因為系統的-〖ΔG〗^0較大並且HAB較弱導致CR速率較慢。


    We study the charge-transfer (CT) dynamics of the electron donor-acceptor (EDA) complexes with broadband femtosecond transient absorption (TA) spectroscopy. The thesis is mainly divided into two topics. In the first topic, we directly excite the CT state of 1-hexene/tetracyanoethylene (Hex/TCNE) complexes to observe their relaxation dynamics and compare the results with the previously-studied BZ/TCNE complexes in our laboratory. We observed TA spectra of TCNE anion (TCNE) and their temporal behaviors. By analyzing their time-dependent behaviors, we found that after exciting the CT state of Hex/TCNE complexes, the excited state complexes undergo rapid solvation relaxation, followed by a slower charge recombination (CR) reaction. Comparing with the results of previously-studied BZ/TCNE system, we did not observe the formation of dimer cation in Hex/TCNE system, but we found that the CR rate of Hex/TCNE complex is faster than those of BZ/TCNE complexes by one to two orders of magnitude due to the enhanced electronic coupling strength (HAB). In the second topic, we excite the CT state of benzonitrile/tetracyanoethylene (PhCN/TCNE) complexes. We observe TA spectra of TCNE, benzonitrile cation (PhCN)+ and benzonitrile dimer cation ((PhCN)2+). By analyzing their time-dependent behaviors, we found that after exciting the CT state of PhCN/TCNE complexes, the excited state complexes undergo rapid solvation and vibrational relaxation, followed by a slower CR reaction, which is strongly dependent on the donor concentrations in solutions. Comparing with the CR process of previously-studied BZ/TCNE complexes, we noticed a different trend in the CR rate of the PhCN/TCNE complexes as the donor concentration increases. Surprisingly, in contrast to BZ/TCNE complexes, the CR rate of the D+Atype is faster than (DD)+Atype in PhCN/TCNE complexes probably due to the different in HAB and reaction free enengy (-〖ΔG〗^0) in the two systems. On top of that, the CR rates are slower in PhCN/TCNE complexes than in BZ/TCNE complexes in similar solvent environments for both D+Aor (DD)+Atypes. The possible reason is related to a greater -〖ΔG〗^0 and a weaker HAB in PhCN/TCNE complexes, leading to their slower CR rates.

    目錄 目錄 i 圖目錄 iii 表目錄 vii 第一章 序論 1 1.1電荷轉移概論 1 1.2電荷轉移理論 3 1.3 EDA錯合物簡介 6 1.4 EDA錯合物電荷轉移回顧 7 1.5 本論文研究目的 9 第二章 實驗系統與技術 10 2.1超快飛秒雷射系統 10 2.1.1飛秒雷射產生源 11 2.1.2能量再生放大器 16 2.2 實驗技術 21 2.2.1 瞬態吸收光譜原理 21 2.2.2 光路架設 24 2.2.3 瞬態吸收光譜自動化數據擷取系統 26 2.2.4 儀器響應函數 28 2.2.5 瞬態吸收光譜時間延遲校正 30 2.3 實驗藥品與EDA錯合物配製 31 第三章 以飛秒瞬態吸收光譜研究1-己烯/四氰基乙烯錯合物電荷轉移態緩解動力學 33 3.1 CT態靜態吸收光譜 33 3.2 以383 nm激發之飛秒瞬態吸收空白實驗 35 3.3 以383 nm激發電荷轉移態之瞬態吸收光譜 38 3.3.1 各比例混合溶劑中以383 nm激發之瞬態吸收光譜 38 3.3.2 450±5 nm及500±10 nm光譜區瞬態吸收動力學行為研究 43 3.4綜合討論 47 3.4.1 Hex/TCNE與BZ/TCNE 錯合物CT態瞬態吸收光譜比較 47 3.4.2 Hex/TCNE與BZ/TCNE CT態錯合物緩解動力學比較 51 第四章 以飛秒瞬態吸收光譜研究苯甲腈/四氰基乙烯錯合物的電荷轉移態電荷轉移動力學 53 4.1 苯甲腈/四氰基乙烯錯合物CT態靜態吸收光譜 53 4.2 以383nm激發飛秒瞬態吸收空白實驗 56 4.3 以383 nm激發PhCN/TCNE錯合物電荷轉移態之瞬態吸收光譜 61 4.3.1 各比例混合溶劑中以383 nm激發之瞬態吸收光譜 61 4.3.2 PhCN/TCNE CT態錯合物瞬態吸收動力學行為 71 4.4綜合討論 78 4.4.1 PhCN/TCNE錯合物CT態的緩解動力學討論 78 4.4.2 PhCN/TCNE與BZ/TCNE錯合物CT態CR緩解動力學比較 82 第五章 結論 88 Reference 91

    1. Sit, P.-L.; Cococcioni, M.; Marzari, N., Realistic quantitative descriptions of
    electron transfer reactions: Diabatic free-energy surfaces from first-principles
    molecular dynamics. J. Phys. Rev. Lett. 2006, 97, 028303.
    2. Sharma, K.; Sharma, V.; Sharma, S. S., Dye-Sensitized Solar Cells: Fundamentals
    and Current Status. Nanoscale Res. Lett. 2018, 13, 381.
    3. Kuznetsov, A. M.; Ulstrup, J., Electron transfer in chemistry and biology. Wiley,
    Chichester: 1999.
    4. Barbara, P. F.; Meyer, T. J.; Ratner, M. A., Contemporary issues in electron transfer
    research. J. Phys. Chem. 1996, 100, 13148-13168.
    5. Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C., Dual Intramolecular ChargeTransfer Fluorescence Derived from a Phenothiazine-Triphenyltriazine Derivative.
    J. Phys. Chem. C 2014, 118, 15985-15994.
    6. Fukuzumi, S., New perspective of electron transfer chemistry. J. Org. Biomol. Chem.
    2003, 1, 609-620.
    7. Chakrabarty, D.; Seth, D.; Chakraborty, A.; Sarkar, N. J. T. J. o. P. C. B.,
    Dynamics of solvation and rotational relaxation of coumarin 153 in ionic liquid
    confined nanometer-sized microemulsions. J. Phys. Chem. B 2005, 109, 5753-5758.
    8. Ghosh, S.; Mondal, S. K.; Sahu, K.; Bhattacharyya, K., Ultrafast electron
    transfer in a nanocavity. Dimethylaniline to coumarin dyes in hydroxypropyl γcyclodextrin. J. Phys. Chem. A 2006, 110, 13139-13144.
    9. Weller, A., Exciplex and radical pairs in photochemical electron transfer. J Pure Appl.
    Chem. 1982, 54, 1885-1888.
    10. Rehm, D.; Weller, A., Kinetics of fluorescence quenching by electron and H‐atom
    transfer. Isr. J. Chem. 1970, 8, 259-271.
    11. Morandeira, A.; Fürstenberg, A.; Pagès, S.; Lang, B.; Vauthey, E., Ultrafast
    spectroscopy on bimolecular photoinduced electron transfer reactions. J Spectr.
    2004, 17, 15.
    12. Marcus, R. A. J. T. J. o. c. p., On the theory of oxidation‐reduction reactions
    involving electron transfer. 1956, 24, 966-978.
    13. Kroon, J.; Oevering, H.; Verhoeven, J. W.; Warman, J. M.; Oliver, A. M.;
    Paddon-Row, M. N., Temperature effects on intramolecular electron transfer kinetics
    under" normal"," inverted", and" nearly optimal" conditions. J. Phys. Chem. 1993,
    97, 5065-5069.
    14. Miller, J. R.; Calcaterra, L.; Closs, G., Intramolecular long-distance electron
    transfer in radical anions. The effects of free energy and solvent on the reaction rates.
    J. Am. Chem. Soc. 1984, 106, 3047-3049.
    15. Mulliken, R. S., Molecular compounds and their spectra. III. The interaction of
    electron donors and acceptors. J. Phys. Chem. 1952, 56, 801-822.
    16. 鄭亭菩. 以超快時間解析螢光光譜研究烯烴類-四氰基乙烯錯合物之分子間電
    荷轉移動力學. 國立清華大學, 2017.
    17. 温逸凡. 以超快時間解析光學克爾光閘螢光光譜研究非甲基取代苯-四氰基乙
    烯錯合物分子間電荷轉移動態學. 國立清華大學, 新竹市, 2017.
    18. Chiu, C. C.; Hung, C. C.; Cheng, P. Y., Ultrafast Charge Recombination Dynamics
    in Ternary Electron Donor-Acceptor Complexes: (Benzene)(2)-Tetracyanoethylene
    Complexes. J Phys Chem B 2016, 120, 12390-12403.
    19. 廖翊凱. 以飛秒瞬態吸收光譜研究苯/四氰基乙烯錯合物之電荷轉移態與局部
    激發態之電荷轉移動力學. 國立清華大學, 2019.
    20. 陳冠宇. 以飛秒瞬態吸收光譜研究苯/四氰基乙烯錯合物 於極性溶劑中電荷
    轉移態與局部激發態之電荷轉移動力學. 國立清華大學, 2020.
    21. Jeanmaire, D. L.; Suchanski, M. R.; Van Duyne, R. P., Resonance Raman
    spectroelectrochemistry. I. Tetracyanoethylene anion radical. J. Am. Chem. Soc.
    1975, 97, 1699-1707.
    22. Wynne, K.; Galli, C.; Hochstrasser, R., Ultrafast charge transfer in an electron
    donor–acceptor complex. J. Chem. Phys. 1994, 100, 4797-4810.
    23. Lorenc, M.; Ziolek, M.; Naskrecki, R.; Karolczak, J.; Kubicki, J.;
    Maciejewski, A., Artifacts in femtosecond transient absorption spectroscopy. J. Appl.
    Phys. B 2002, 74 (1), 19-27.
    24. Mehnert, R.; Brede, O.; Cserep, G., Pulse radiolysis investigation of alkene radical
    cations. Radiat. Phys. Chem. 1985, 26, 353-363.
    25. Iyer, E. S. S.; Sadybekov, A.; Lioubashevski, O.; Krylov, A. I.; Ruhman, S.,
    Rewriting the Story of Excimer Formation in Liquid Benzene. J. Phys. Chem. A 2017,
    121, 1962-1975.
    26. Xu, H.; Johnson, P. M.; Sears, T. J., Photoinduced Rydberg ionization spectroscopy
    of the B̃state of benzonitrile cation. J. Chem. Phys. 2006, 125, 164331.
    27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
    Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.;
    Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts,
    R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.;
    Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.;
    Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.;
    Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota,
    K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
    Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.;
    Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.;
    Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.;
    Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;
    Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.
    W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.
    Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
    28. Chai, J.-D.; Head-Gordon, M., Long-range corrected hybrid density functionals with
    damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10,
    6615-6620.
    29. Burns, L. A.; Vázquez-Mayagoitia, A.; Sumpter, B. G.; Sherrill, C. D., Densityfunctional approaches to noncovalent interactions: a comparison of dispersion
    corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized
    functionals. J. Chem. Phys. 2011, 134, 084107.
    30. Li, A.; Muddana, H. S.; Gilson, M. K., Quantum Mechanical Calculation of
    Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT
    Approaches. J. Chem. Theory Comput. 2014, , 1563-1575.

    QR CODE