研究生: |
林政儒 Lin, Cheng-Ju |
---|---|
論文名稱: |
利用氣相傳輸法製備單晶VO2奈米線及其性質量測 Synthesis and Properties of Single Crystalline Vanadium Dioxide Nanowires by Vapor Transport Method |
指導教授: |
陳建瑞
Chen, Jiann-Ruey |
口試委員: |
陳伯宜
洪茂峰 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 二氧化釩 、奈米線 、氣相傳輸法 、金屬絕緣體轉換溫度 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究重點在於製備二氧化釩(Vanadium Dioxide)奈米線及其性質量測。由於我們實驗腔體內的真空度偏低(約為0.4torr~4torr),因此學生嘗詴是否可直接利用腔體內的殘留氧氣參與製備氧化物奈米結構,所以學生利用反應性高的三氯化釩(VCl3)當做前驅物,升溫至300℃蒸發成氣體再經由載流氣體(carrier gas)運送至下流矽基板處,此區塊操作溫度介於900℃至1100℃之間,此時釩原子與腔體中的氧氣反應生成二氧化釩奈米線沉積在矽基板上。
學生利用不同的載流氣體也就是不同的化學氣氛去觀察其奈米線生成的影響,發現通入Pure Ar、Ar 80% + O2 20%、Ar 90% + H2 10%這三種氣體生成的產物形貌不盡相同,且對於溫度及持溫時間對於奈米線的直徑長度比也有些許的相關性。合成的奈米線為長方形柱體其直徑大多座落於30 nm – 300 nm 及長度約為五微米~數十微米之間,長度直徑比約為50-250。
二氧化釩奈米線的形貌用場發射掃描電子顯微鏡(FESEM JSE-6500F)觀察,之後學生再去做ESCA分析,對照工具書以及文獻得出是二氧化釩結構,而晶體結構利用高解析穿透式電子顯微鏡(TEM JEOL JEM-2010及 HRTEM JEOL JEM-3000F)及電子選區繞射(SAED)圖形確認其為二氧化釩單晶結構得到晶面及其成長方向,其成長方向為低指數方向面。
由於二氧化釩其獨特的金屬絕緣體轉換電性(metal-insulator transition,MIT),我們拿去量測二氧化釩的常溫電性(I-V)以及升溫電性曲線。常溫電性量測我們的二氧化釩奈米線平均電阻率為30.077Ω-cm,屬於半導體範圍。
參考文獻
[1]王崇人,科學發展2002年6月,354期
[2]http://scienceworld.wolfram.com/physics/tunneling.html
[3]Avouris, Phaedon,Lyn, In-Whan,Hasegawa,Yukio.,”Probling electrical transport, electron interference, and quantum size effects at surface with STM/STS”,IBM Journal of Research & Development,00188646,Nov95,Vol.39,Issue6
[4]Y.D.Kim, W. Choi,H. Wakimoto, S. Usami,H. Tomokage, T.Ando,”Direct observation of electron emission site on boron-doped polycrystalline diamond thin films using an ultra-high-vacuum scanning tunneling microscope “,Appl.Lett.75,3129
(1999)
[5]Banerjee D, Jo SH, Ren ZF “Enhanced field emission of ZnO nanowires”, Adv. Mater.16, NO.22, (2004)
[6]Zhengwei Pan, Hau-Ling Lai, Frederick C. K. Au, Xioafeng Duan, Weiya Zhou, Wensheng Shi, Ning Wang, Chun-Sing Lee, Ning-Biu Wong, Shuit-Tong Lee, and Sishen Xie, “Oriented silicon carbide nanowires: Synthesis and field emission properties”, Adv. Mater. 12, NO.16, 4, (2000)
[7]Wan Q, Wang TH, “Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application”, Chem. Commun. 30, 3841 (2005)
[8]Wang JX, Sun XW, Huang H, et al. “A two-step hydrothermally grown ZnO microtube array for CO gas sensing” Applied Physics A-Materials Science & Processing, 88, 4, pp. 611-615
[9]Huang XJ, Choi YK, “Chemical sensors based on nanostructured materials”, Sens. Actuators B: Chem. pp. 659-671,(2007)
[10] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 1991, Vol. 354, 56
81
[11]Duan, X.F. and C.M. Lieber, General Synthesis of Compound Semiconductor Nanowires. Advanced Materials, 2000. 12(4): p. 298-302
[12]Morales, A.M. and C.M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science, 1998. 279(5348): p. 208-211
[13]Trentler, T.J., et al., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth. Science, 1995. 270(5243): p. 1791-1794
[14]Wu, Y.Y., R. Fan, and P.D. Yang, Block-by-Block Growth of Single-Crystalline Si/Sige Superlattice Nanowires. Nano Letters, 2002. 2(2): p. 83-86
[15]Choi, Y.C., et al., Catalytic Growth of Beta-Ga2O3 Nanowires by Arc Discharge. Advanced Materials, 2000. 12(10): p. 746
[16]Wu, Y.Y., B. Messer, and P.D. Yang, Superconducting MgB2 Nanowires. Advanced Materials, 2001. 13(19): p. 1487
[17]Wu, Y.Y. and P.D. Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth. Journal of the American Chemical Society, 2001. 123(13): p. 3165-3166
[18]Chen, C.C. and C.C. Yeh, Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires. Advanced Materials, 2000. 12(10): p. 738
[19]Huang, M.H., et al., Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials, 2001. 13(2): p. 113-116
[20]Yazawa, M., et al., Effect of One Monolayer of Surface Gold Atoms on the Epitaxial-Growth of Inas Nanowhiskers. Applied Physics Letters, 1992. 61(17): p. 2051-2053
[21]Meindl, J.D., Q. Chen, and J.A. Davis, Limits on Silicon Nanoelectronics for Terascale Integration. Science, 2001. 293(5537): p. 2044-9.
[22] Lieber, C.M., The Incredible Shrinking Circuit. Sci Am, 2001. 285(3): p. 58-64.
[23]Drexler, K.E., Engines of Creation, the Coming Era of Nanotechnology, in Anchor Press. 1986: New York.
82
[24 Wu, Y.Y., R. Fan, and P.D. Yang, Block-by-Block Growth of Single-Crystalline Si/Sige Superlattice Nanowires. Nano Letters, 2002. 2(2): p. 83-86.
[25 Choi, Y.C., et al., Catalytic Growth of Beta-Ga2O3 Nanowires by Arc Discharge. Advanced Materials, 2000. 12(10): p. 746
[26]http://engr.nmsu.edu/~jcecil/current-initiatives/NanoTechnology_Research/SCREAM.htm
[27]Zhu DL, Zhu H, Zhang YH, “Hydrothermal synthesis of La0.5Ba0.5MnO3 nanowires”, Appl. Phys. Lett. 80, 1634 (2002)
[28]Xu G, Ren ZH, Du PY, Weng WJ, Shen G, Han GR, “Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires”, Adv. Mater. 17, NO.7, (2005)
[29]Y. W. Wang, L. Zhang, C. H. Liang, G. H. Wang, X. S. Peng. "Catalytic Growth and Photoluminescence Properties of Semiconductor Single-crystal ZnS Nanowires.". Chen. Phys. Lett. (2002), Vol. 357, pp. 314–318
[30]Y. W. Wang, G. W. Meng, L. Zhang, C. H. Liang, J. Zhang. "Catalytic Growth of Large-Scale Single-Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence.". Chem. Mater. (2002), Vol. 14, p. 1773-1777
[31]Y. Q. Chen, X. F. Cui, K. Zhang, D. G. Pan, S. Y. Zhang, B. Wang, J. G. Hou. "Bulk-quantity Synthesis and Self-catalytic VLS Growth of SnO2 Nanowires by Lower-temperature Evaporation.". Chem. Phys. Lett. (2003), Vol. 369, pp. 16–20.
[32]H. Y. Peng, N.Wang, X. T. Zhou, Y. F. Zheng, C. S. Lee, S. T. Lee. "Control of Growth Orientation of GaN Nanowires.". Chem. Phys. Lett. (2002), Vol. 359, pp. 241–245.
[33]T. I. Kamins, X. Li, R. S.Williams. "Growth and Structure of Chemically Vapor Deposited Ge Nanowires on Si Substrates.". Nano. Lett. (2004), Vol. 4, pp. 503-506.
[34] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, ”Haxagonal pore arrays
83
with a 50-420 nm interpore distance formed by self-organization in anodic alumina,”J Appl. Phys 84,6023 (1998).
[35] Y. Kanamori and K. Hane,” 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,”Appl. Phys. Lett. 78, 142
(2001).
[36]Cheonho Yoon and Jung Sang Suh, ”Electrochemical Fabrication of CdS/Co Nanowire Arrays in Porous Aluminum Oxide Templates, ”Bull. Korean Chem.Soc 23, 1519 (2002).
[37]Westwater, J., et al., Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction. Journal of Vacuum Science & Technology B, 1997. 15(3): p. 554-557
[38]Morales, A.M. and C.M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science, 1998. 279(5348): p. 208-211.
[39]Zhu, Y.Q., et al., 3d Silicon Oxide Nanostructures: From Nanoflowers to Radiolaria. Journal of Materials Chemistry, 1998. 8(8): p. 1859-1864
[40]Liu, Z.Q., et al., Synthesis of Alpha-SiO2 Nanowires Using Au Nanoparticle Catalysts on a Silicon Substrate. Journal of Materials Research, 2001. 16(3): p. 683-686.
[41]Skuja, L. Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide. 1998.
[42]Choi, Y.C., et al., Catalytic Growth of Beta-Ga2O3 Nanowires by Arc Discharge. Advanced Materials, 2000. 12(10): p. 746-+.
[43]Trentler, T.J., et al., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth. Science, 1995. 270(5243): p. 1791-1794
84
[44]Yan, H.F., et al., Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism. Chemical Physics Letters, 2000. 323(3-4): p. 224-228.
[45]Yu, D.P., et al., Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (Sls) Mechanism. Physica E, 2001. 9(2): p. 305-309.
[46]Zakharov, N.D., et al., Growth Phenomena of Si and Si/Ge Nanowires on Si(111) by Molecular Beam Epitaxy. Journal of Crystal Growth, 2006. 290(1): p. 6-10.
[47]Kar, S., et al., One-Dimensional Zno Nanostructure Arrays: Synthesis and Characterization. Journal of Physical Chemistry B, 2006. 110(10): p. 4605-4611.
[48]Lan, Z.H., et al., Nanohomojunction (Gan) and Nanoheterojunction (Inn) Nanorods on One-Dimensional Gan Nanowire Substrates. Advanced Functional Materials, 2004. 14(3): p. 233-237.
[49]Chan, S.K., et al. Molecular Beam Epitaxy-Grown Znse Nanowires. 2006.
[50]Yin, Y.D., G.T. Zhang, and Y.N. Xia, Synthesis and Characterization of Mgo Nanowires through a Vapor-Phase Precursor Method. Advanced Functional Materials, 2002. 12(4): p. 293-298.
[51]Zhang, R.Q., Y. Lifshitz, and S.T. Lee, Oxide-Assisted Growth of Semiconducting Nanowires. Advanced Materials, 2003. 15(7-8): p. 635-640.
[52]Shi, W.S., et al., Free-Standing Single Crystal Silicon Nanoribbons. Journal of the American Chemical Society, 2001. 123(44): p. 11095-11096.
[53]Lee, S.T., N. Wang, and C.S. Lee. Semiconductor Nanowires: Synthesis, Structure and Properties. 2000.
[54]Wang, N., et al., Si Nanowires Grown from Silicon Oxide. Chemical Physics Letters, 1999. 299(2): p. 237-242.
[55] S.Loffler,Erwin A, Matthias Weil,Appl Phys A,102: 201–204(2011)
85
[56]Takhee Lee, MRB, Korea, p.p.1649-1656(2008)
[57]K. H. Jackson, ASM, Cleveland, p.p.174-186, (1958)
[58]G. Silversmit, D. Delpa, H. Poelman, G.B. Marin, R.D. Gryse, J. Electron Spectrosc. Relat. Phenom. 135 (2004) 167.
[59] Maeng J, Kim TW, Jo G, et al,MRB, p.p.1649-1656, (2008)