簡易檢索 / 詳目顯示

研究生: 劉剛維
Liu, Kang Wei
論文名稱: 鑲嵌於單階晶格的多邊形之展開演算法
On unfolding 3D lattice polygons of unit height
指導教授: 孫宏民
Sun, Hung Min
口試委員: 潘雙洪
Poon, Sheung Hung
林春成
Lin, Chun Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 51
中文關鍵詞: 晶格多邊形展開
外文關鍵詞: lattice, polygon, unfolding, linkage
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討鑲嵌於單階晶格的多邊形之展開演算法,
    且在展開演算法中,不允許任何不相連的邊有交叉。
    我們先證明了所有鑲嵌於深度為n的兩列單階晶格的未打結多邊形一定可以在O(n^2)的時間內展開,
    然後也證明了鑲嵌於3x3單階晶格的未打結多邊形也一定可以折到兩列單階晶格內。
    我們的演算法中最核心的部份是我們需要把所有多邊形的區塊由右往左的全部折起來,
    使原本三維的多邊形被折成一個二維的凸多邊形。
    我們最後提出了一個未解的問題:「是否所有鑲嵌於晶格的未打結多邊形都是可展開的?」,且希望這篇論文可以使我們離解開這個問題更靠近一步。


    We consider the problems of unfolding lattice polygons lying in a width-2 lattice of unit height.
    During the unfolding process, all linkage edges are preserve and no edge crossing are allowed.
    Let n be the depth of edges of the given lattice polygon.
    We first show that a unknotted lattice polygon lying in a 3D width-2 lattice of unit height can be unfolded in O(n^2) moves and time.
    We then show that a unknotted lattice polygon lying in a 3D 3x3 lattice of unit height can be reconfigured to a 2x2 lattice polygon.
    The main technique in our algorithms is to fold up all blocks of the lattice polygon from the rightmost cubic cells of the given lattice.
    We hope that our results shed some light on solving the more general conjectures, which we proposed, that a 3D unknotted lattice polygon lying in any lattice can always be unfolded.

    1 Introduction 1 1.1 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Lattice Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Preliminaries 6 2.1 Simple blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Folding and Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Types of Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Lattice Polygons in 3D in a Width-2 Lattice of unit height 10 3.1 Some Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 3D Lattice Polygons in a 2 2 lattice of unit height . . . . . . . . . . . . 13 3.3 3D Lattice Polygons in a 2 3 lattice of unit height . . . . . . . . . . . . 16 3.4 3D Lattice Polygons in a 2 4 Lattice of unit height . . . . . . . . . . . 18 3.5 3D Lattice Polygons in a 2 5 lattice of unit height . . . . . . . . . . . . 22 3.6 3D Lattice Polygons in a 2 n lattice of unit height . . . . . . . . . . . . 25 4 Conclusion and Discussion 31 4.1 3D Unknotted Lattice Polygons in a 3 3 lattice of unit height . . . . . 31 4.2 The Problems of Showing 3xn Lattice Polygons of unit height Are Unfoldable 47 4.3 Conclusion and Open Problem . . . . . . . . . . . . . . . . . . . . . . . . 48

    [1] J. H. Cantarella, E. D. Demaine, H. N. Iben, and J. F. O’Brien. An energy-driven
    approach to linkage unfolding. In Proc. 20th Annual ACM Symposium on Computational
    Geometry, 134–143, 2004.
    [2] R. Connelly, E. D. Demaine, and G. Rote. Infinitesimally locked self-touching linkages
    with applications to locked trees. In Physical Knots: Knotting, Linking, and
    Folding of Geometric Objects in R3, American Mathematical Society, 287–311, 2002.
    [3] R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and convexifying
    polygonal cycles. In Proc. 41st Annual ACM Symposium on Foundations
    of Computer Science, 432–442, 2000.
    [4] K. A. Dill. Dominant forces in protein folding. Biochemistry, 29(31):7133–7155,
    1990.
    [5] B. Hayes. Proteins. American Scientist, 86(3):216–221, 1998.
    [6] K. Koniaris and M. Muthukumar. Knottedness in ring polymers. Physical Review
    Letters, 66:2211–2214, 1991.
    [7] B. Marcone, E. Orlandini, A. L. Stella, and F. Zonta. Size of knots in ring polymers.
    Physical Review E, 75:041105-1–041105-11, 2007.
    [8] S. B. Ozkan, M. S. Shell, T. R. Weikl, and K. A. Dill. The protein folding problem.
    Annual Review of Biographysics, 37:289–316, 1993.
    [9] S.-H. Poon. On unfolding lattice polygons/trees and diameter-4 trees. In Proc.
    12th International Computing and Combinatorics Conference. LNCS, volume 4112,
    186–195, 2006.
    [10] S.-H. Poon. On unfolding 3D lattice polygons and 2D orthogonal trees. In Proc.
    14th International Computing and Combinatorics Conference. LNCS, volume 5092,
    374–384, 2008.
    [11] I. Streinu. A combinatorial approach to planar non-colliding robot arm motion
    planning. In Proc. 41st Annual ACM Symposium on Foundations of Computer
    Science, 443–453, 2000.
    [12] D. Yuanan. Minimal knotted polygons on the cubic lattice. Journal of Knot Theory
    and Its Ramifications, 02(04):413–425, 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE