研究生: |
曾于誌 Tseng, Yu Chih |
---|---|
論文名稱: |
雷德堡EIT的雙光子共振穩頻 Stabization of two-photon resonance frequency in the Rydberg EIT transition |
指導教授: |
余怡德
Yu, Ite A. |
口試委員: |
陳應誠
Chen, Ying-Cheng 陳泳帆 Chen, Yong-Fan 余怡德 Yu, Ite-A |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 雷德堡EIT 、雷射穩頻 、原子分子物理 |
外文關鍵詞: | Rydberg EIT, Laser stablization, Atomic physics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
EIT 實驗對於雙光子共振的穩定度要求甚高,其中Cascade type EIT的雙光子共振條件為兩道雷射光頻的和。本論文的研究主要是利用雷德堡(Rydberg state)電磁波引發透明(electromagnetically induced transparency)的光譜特性,穩定兩道雷射光頻的和,以提供一個穩定的系統做雷德堡EIT的相關實驗。
本論文主要分為三部分:
第一部分(第一到第二章),介紹此研究的理論背景, Pound–Drever–Hall(PDH)鎖頻方法和可能遇到的問題,到雷德堡EIT的理論簡介,以及我們使用冷原子慢光光譜檢驗鎖頻結果的相關理論
第二部分(第三到第四章),為實驗的方法與架設,此部分敘述我們是如何穩定兩道雷射(780 nm和藍光雷射)的光頻,以及利用微分光譜訊號初步檢視微分光譜的結果。
第三部分(第五章)為實驗的結果,包含兩種我們最後採用的方法,以及個別利用慢光檢測鎖頻的結果。
Abstract
During the electromagnetically induced transparency (EIT) experiments, it requires very high quality of two-photon detuning stabilization. In cascade type EIT, the two-photon detuning is the sum of detuning from the probe and the coupling. We exploited the property of room-temperature Rydberg EIT to lock the sum of detuning from a 780 nm probe laser and a 480 nm coupling laser.
This thesis contents three main parts:
First, in chapter 1 and chapter 2, I will introduce the principles of PDH scheme and Rydberg EIT. I will discuss the problems which we encountered while exploiting the PDH scheme and illustrate the theoretical background about determining our locking result with cold-atom slow light spectroscopy.
Second, in chapter 3 and chapter 4, I will show the optical and electrical systems we used to lock our lasers and the locking results of each set up from the FM spectra.
Third, in chapter 5, I will demonstrate the cold-atom slow light spectroscopy experiment results.
參考資料
[1] Drever, R. W. P., Hall, J. L., Kowalski, F. V., Hough, J., Ford, G. M., Munley, A. J., & Ward, H. (1983). Laser phase and frequency stabilization using an optical resonator. Applied Physics B, 31(2), 97-105.
[2] Diehl, J. F., Sunderman, C. E., Singley, J. M., Urick, V. J., & Williams, K. J. (2017). Control of residual amplitude modulation in Lithium Niobate phase modulators. Optics Express, 25(26), 32985-32994.
[3] Whittaker, E. A., Gehrtz, M., & Bjorklund, G. C. (1985). Residual amplitude modulation in laser electro-optic phase modulation. JOSA B, 2(8), 1320-1326.
[4] Li, Z., Zhao, L., Tan, W., Ma, W., Zhao, G., Fu, X., ... & Jia, S. (2014). Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique. Sensors and Actuators B: Chemical, 196, 23-30.
[5] 賴怡樺, “四波混頻的雙光子備製與室溫原子的雷德堡-電磁波影發透明光譜”, 國立清華大學, 碩士論文 (2016)
[6] 梁世倫, “冷原子的雷德堡態EIT光譜”, 國立清華大學, 碩士論文 (2016)
[7] Abel, R. P., Mohapatra, A. K., Bason, M. G., Pritchard, J. D., Weatherill, K. J., Raitzsch, U., & Adams, C. S. (2009). Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system. Applied Physics Letters, 94(7), 071107.
[8] Mack, M., Karlewski, F., Hattermann, H., Höckh, S., Jessen, F., Cano, D., & Fortágh, J. (2011). Measurement of absolute transition frequencies of Rb 87 to nS and nD Rydberg states by means of electromagnetically induced transparency. Physical Review A, 83(5), 052515.