簡易檢索 / 詳目顯示

研究生: 周哲平
Justin C.P. Chou
論文名稱: 白金觸媒之製備與鈦釩鉻合金氫化特性及其在燃料電池應用之研究
Synthesis of Platinum Catalyst and Hydrogenation Properties of Ti25V35Cr40 for Application in Fuel Cell
指導教授: 彭宗平
Tsong-Pyng Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 131
中文關鍵詞: 燃料電池白金觸媒鈦釩鉻合金
外文關鍵詞: PEMFC, Pt catalyst, TiVCr alloy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源危機不僅會造成國家間的紛爭,也隨時影響全球的經濟,其造成的通貨膨脹和空氣惡化皆影響人類的生活品質和環境,由於石油價格不斷的攀升,許多替代性能源的商業價格變得更具競爭力,例如豐田的油電混合車以及歐洲廣設的太陽能和風力發電設備。這些綠色能源是未來的希望,更是解決目前人類面臨的能源危機之方法。本論文分為兩部分,分別對綠色能源中的燃料電池之電極材料和儲氫合金之氫化特性進行研究。

    氫氣燃料電池必須使用白金作為催化反應之觸媒,目前廣泛使用的白金觸媒利用碳黑作為分散的載體以增加反應面積。多壁奈米碳管有良好的機械和電性質,本研究嘗試將白金顆粒沉積於多壁奈米碳管的表面,希望能增加觸媒的穩定性和活性。當多壁奈米碳管經過酸洗處理後,其表面形成許多官能基,利用沉澱與氫氣還原法或硼氫化鈉的直接還原法皆能將白金均勻地分散在多壁奈米碳管和奈米鬚(carbon nanohorn)的表面。相較之下,沒有經過酸洗處理的奈米碳管則無法使白金均勻的分散在其表面。電化學量測燃料電池的結果得知白金在多壁奈米碳管上的發電效率每平方公分為0.25瓦,而使用碳黑的白金則有0.28瓦,兩個值相去不遠。其中又發現,如以多壁奈米碳管作為白金的載體,其氣體擴散電極中所需要的Nafion含量須降至10~20%才可達到最好發電效果,與表面積較高之碳黑所需的30%不同。

    釩是一種可以吸附大量氫氣的儲氫合金,但是昂貴的價格讓純釩失去應用競爭力。如將釩鈦鉻熔成合金,其氫化特性與純釩相差不遠,但是便宜的鈦和鉻能增加合金的價格競爭力。本研究則在鈦釩鉻(Ti25V35Cr40)合金中置入少量的碳和硼元素,希望能增加其有效放氫量。利用電弧爐及氬氣電漿將金屬元素熔煉成合金,將試片在真空環境下以1200oC熱處理兩小時,使其均質化。從X光繞攝的結果和晶相顯微鏡的觀察下,發現所有的合金皆形成BCC相,但仍有一些析出物。研究發現,鈦釩鉻的有效放氫量為0.80H/M,但置入1 at%的硼和0.1 at%的碳元素之後,其有效放氫量則可分別提高至0.86H/M和0.87H/M。這九個百分比的差可以讓氫氣燃料電池汽車上的儲氫合金減少60到80公斤的重量,未來具有商品應用的潛力。


    Energy crisis not only causes conflicts between nations, but also affects the world economy. Inflation and air-pollution both devaluate the living environment of human being. As crude oil price keeps increasing, many alternative energy systems become competitive for commercialization, such as the hybrid car from Toyota, solar, and wind power in European countries, etc. They are the hope to solve for the many problems people are encountering now. This study focuses on two building blocks of green energy: fuel cell and hydrogen storage.

    Hydrogen fuel cell requires platinum (Pt) catalyst to accelerate the reaction, and most of the commercial Pt catalysts are deposited on amorphous carbon black for greater reaction surface area. With a hope to increase the activity and stability of Pt catalyst, another approach was made in this study by depositing Pt on multi-walled carbon nanotubes (MWNTs), which retain good mechanical and electrical properties. MWNTs were first surface modified with a mixture of nitric and sulfuric acid to produce surface functional groups. By either precipitation of Pt particles in a solution with an appropriate pH or direct reduction of Pt particles using sodium borohydride, Pt particles can be dispersed uniformly on the surface of modified MWNTs and carbon nanohorn (CNH). Moreover, the diameters of Pt can be controlled at 1 to 3 nm and 2 to 4 nm, respectively. In contrast, without surface modification, the Pt particles would tend to aggregate on the surface defects and tubular-ends of MWNTs. The cell performance with (17%) Pt/MWNT as the catalyst is 0.25 W/cm2, while that of commercial E-TEK (20%) Pt/XC-72 is 0.28 W/cm2. Unlike the optimal Nafion® loading in Pt/XC-72 gas diffusion electrode (GDE), the optimal Nafion® loading in Pt/MWNT GDE is determined to be between 10 and 20%.

    As for hydrogen storage material, vanadium (V) can absorb a large amount of hydrogen; however, the high cost of V is its drawback. By alloying V with inexpensive titanium (Ti) and chromium (Cr), they turn into an inexpensive hydrogen storage alloy with respectable hydrogenation properties. In this study, 0.1 at% to 5 at% of boron (B) or carbon (C) was doped into the interstitial sites of the bcc Ti25V35C40 alloy, hoping to increase the effective desorption capacities for fuel cell application. The samples were prepared by arc melting and homogenized by annealing at 1200oC for 2 hours in vacuum. From X-ray diffrection and optical microscopic analyses, all specimens formed a bcc phase with the presence of some minor second phases. The effective desorption capacity of Ti25V35Cr40 is 0.80 H/M. The specimens that added with 1% B or 0.1% C exhibit greater effective desorption capacities, with values of 0.86 H/M and 0.87 H/M, respectively. The 9% increase of effective desorption capacity can reduce the weight of metal hydride in fuel cell vehicles by 60 to 80 kg, that demonstrates a greater potential for commercial applications.

    摘 要 Abstract 致 謝 Prologue Table of Contents Chapter I Introduction 1.1 The Development of Fuel Cell...............1 1.2 Types of Fuel Cell .........................2 1.3 Fuel Cell in Vehicles......................2 1.4 Portable Fuel Cell .........................7 1.5 Hydrogen as an energy carrier..............9 1.6 Motivation of Research....................13 Chapter II Literature Review 2.1 Principle of PEMFC ........................16 2.2 Thermodynamics of PEMFC...................16 2.3 PEMFC Efficiently.........................18 2.4 Kinetics of PEMFC.........................20 2.5 Membrane Electrode Assembly ...............21 2.5.1 Proton exchange membrane..................21 2.5.2 Gas diffusion layer.......................22 2.5.3 Catalyst..................................22 2.6 Surface Modification of Carbon Nanotubes (CNTs)...25 2.7 Effect of Nafion® Loading.................29 2.8 Principle of Metal Hydride................33 2.8.1 Pressure-composition-temperature (PCT) curve...35 2.9 Properties of Hydrogen....................39 2.10 Ti-V Based Solid Solution.................39 Chapter III Experimental Procedures 3.1 Synthesis of Platinum Nanoparticles on Surface Modified Multi-walled Carbon Nanotubes (MWNTs)...49 3.1.1 Surface modification of MWNTs.............49 3.1.2 Synthesis of Pt catalyst by precipitation (P)...51 3.1.3 Synthesis of Pt catalyst by reduction using NaBH4 in strong base (N)...51 3.1.4 X-ray diffraction analysis................53 3.1.5 Thermal gravitational analysis............53 3.1.6 Transmission electron microscopy..........53 3.1.7 Preparation of membrane electrode assembly (MEA)...55 3.1.8 PEMFC single cell performance testing station...57 3.2 Effects of Boron and Carbon on the Hydrogenation Properties of Ti25V35Cr40..........................60 3.2.1 Preparation of TiVCr alloy ingot by arc melting...60 3.2.2 Annealing treatment.......................62 3.2.3 PCT curve .................................64 3.2.3.1 Activation................................65 3.2.3.2 Hydrogenation measurement.................64 Chapter IV Results and Discussion 4.1 Surface Modification of MWNTs.............67 4.2 Deposition of Pt on MWNTs by Precipitation Method...69 4.2.1 XRD analysis..............................69 4.2.2 TEM analysis..............................71 4.2.3 Estimation of Pt loading on MWNTs based on TGA...71 4.2.4 I-V test..................................72 4.3 Deposition of Pt on MWNTs by Direct Reduction Using NaBH4 with Strong Base...81 4.3.1 XRD analysis..............................81 4.3.2 TEM analysis..............................81 4.4 Effect of Nafion Loading on Cell Performance...84 4.4.1 Commercial E-TEK Pt/XC-72 catalyst powder...84 4.4.2 As synthesized Pt/MWNT(m-5),P catalyst powder...84 4.5 Effect of Boron and Carbon Additives on the Hydrogenation Properties of Ti25V35Cr40 Alloy ...88 4.5.1 Effect of boron...........................88 4.5.1.1 X-ray diffraction analysis................88 4.5.1.2 Microstructure............................88 4.5.1.3 Hydrogenation properties of Ti25V35Cr40 with addition of boron...89 4.5.2 Effect of carbon..........................95 4.5.2.1 XRD analysis..............................95 4.5.2.2 Microstructure............................95 4.5.2.3 Hydrogenation properties of Ti25V35Cr40 with addition of carbon .................................96 Chapter V Conclusions............................102 References........................................103 Appendix 1 – Anywhere Traveler’s Power (ATP)....107 Curriculum Vitae..................................129

    1. Appendix A – “BP Statistical Review of World Energy 2008” http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622.
    2. EG & G Technical Services, Inc., “Fuel Cell Handbook (6th Edition)”, U.S. Department of Energy (2002).
    3. Patrick P. Steinemann, “R&D Strategies for New Automotive Technologies: Insights from Fuel Cells” International Motor Vehicle Program, MIT.
    4. “A Summary of Fuel Cell Vehicles” http://www.hydrogencarsnow.com/.
    5. “Honda “FCX- Clarity” http://automobiles.honda.com/fcx-clarity/.
    6. R. L. Cohen, J. H. Wernick, “Hydrogen Storage Materials: Properties and Possibilities”, Science, 214 (1981) 1081.
    7. G. Sandrock, J. Alloys and Comp., 293-295 (1999) 877-878.
    8. W. Z. Li, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G. Q. Sun, Q. Xin, Carbon, 40 (2002) 787.
    9. X. S. Zhao, W. Z. Li, L. H. Jian, W. J. Zhou, Q. Xin, B. L. Yi, G. Q. Sun, Carbon, 42 (2004) 3251.
    10. J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan, J. Am. Chem. Soc., 116 (1994) 7935.
    11. C. A. Toles, W. E. Marshall, M. M. Johns, Carbon, 37 (1999) 1207.
    12. J. L. Bahr, J. P. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour, J. Am. Chem. Soc., 123 (2001) 6536.
    13. 羅聖才,曾重仁,“多璧奈米碳管被覆奈米白金顆粒之製程特性分析”,中國材料年會會議論文 (2004).
    14. H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, App. Catal. B, 56 (2005) 9-35.
    15. S. Litster, G. McLean, J. Power Sources, 130 (2004) 61-76.
    16. http://www.personalweb.unito.it/gabriele.ricchiardi/Dati/ECCC-1/nafion.html.
    17. X. Zhao, W. Li, L. Jiang, W. Zhou, Q. Xin, B. Yi, G. Sun, Carbon, 42 (2004) 3251.
    18. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, J. Phys. Chem. B, 107 (2003) 6292.
    19. R. Yu, L. Chen, Q. Liu, J. Lin, K.-L. Tan, S. C. Ng, H. S. O. Chan, G.-Q. Xu, T. S. A. H, Chem. Mater., 10 (1998) 718.
    20. H. P. Boehm, Carbon, 32 (1994) 759.
    21. E. Passalacqua, F. Laufrano, G. Squadrito, A. Patti, L. Giorgi, Electrochim. Acta, 46 (2001) 799-805.
    22. E. Antolini, et al, J. Power Sources 77 (1999) 136-142.
    23. Z. Qi, A. Kaufman, , J. Power Sources, 113 (2003) 37-43.
    24. G. Sandrock, G. Thomas, “IEA/DOE.SNL Hydride Databases”, Internet URL http://hydpark.ca.sandia.gov.
    25. L. Schlapbach, A Zuttel, Nature, 414 (2001) 353.
    26. Properties of hydrogen, Internet URL http://en.wikipedia.org/wiki/Hydrogen.
    27. C. C. Shen and T. P. Perng, Acta Mater., 55 (2007) 1053.
    28. J. J. Reilly and R. H. Wiswall, J. Inorg. Chem., 9 (1970) 1678.
    29. X. B. Yu, Z. Wu, B. J. Xia and N. X. Xu, J. Alloys Comp, 373 (2004) 134-136.
    30. X. B. Yu, T. Dou, Z. Wu, B. J. Xia and J. Shen, Nanotechnology, 17 (2006) 268-271.
    31. X. B. Yu, Z. Wu, F. Li, B. J. Xia and N. X. Xu, Appl. Phys. Lett., 84 (2004) 3199-3201.
    32. S. W. Cho, H. Enoki and E. Akiba, J. Alloys Comp., 307 (2000) 304-310.
    33. S. W. Cho, C. S. Han, C. N. Park and E. Akiba, J. Alloys Comp., 289 (1999) 244-250.
    34. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura and A. Kamegawa, J. Alloys Comp., 330-332 (2002) 511-516.
    35. S. Iijima, Nature, 354 (1991) 56-58.
    36. Z. Liu, L. M. Gan, L. Hong, W. Chen, J. Y. Lee, J. Power Sources, 139 (2005) 73-38.
    37. D.-J. Gao, H.-L. Li, J. Electroanalytical Chem., 573 (2004) 197-202.
    38. Zheng-Zhao Guo, “Design and Evaluation of Portable Proton Exchange Membrane Fuel Cells”, Mater Thesis of Materials Science and Engineering, National Tsing Hua Univeristy (2001).
    39. Yan-Ran Wu, “Carbon Supported Platinum for Proton Exchange Membrane Fuel Cells”, Mater Thesis of Materials Science and Engineering, National Tsing Hua Univeristy (2003).
    40. S. M. Lee and T.P. Perng, Int. J. Hydrogen Energy, 25 (2000) 831-836.
    41. S. W. Cho, J. H. Yoo, G Shim, G. N. Park, and J. Choi, Int. J. Hydrogen Energy, 33 (2008) 1700-1705.
    42. X. B. Yu, Z. Wu, F. Li, B. J. Xia and N. X. Xu, Mater. Chem. & Phys.., 83 (2004) 273.
    43. S.-Y. Liu, Kinetics and Stress Analysis for Hydrogenated Pd Nanofilms and Engineering Design for Utilization of Metal Hydrides, Ph.D. Thesis of Materials Science and Engineering, National Tsing Hua Univeristy (2000).
    44. Chia-Chieh Shen, Characteristics of Metal Hydrides and Their Applications in Hydrogen Energy and Microstructural Modification, Ph.D. Thesis of Materials Science and Engineering, National Tsing Hua Univeristy (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE