簡易檢索 / 詳目顯示

研究生: 黃郁慈
Huang, Yu-Tze
論文名稱: Incremental Clustering: An Example of Legislative Interpellation
應用漸進式分群於立法委員之質詢
指導教授: 林福仁
Lin, Fu-Ren
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技管理研究所
Institute of Technology Management
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 44
中文關鍵詞: 漸進式分群質詢立法院
外文關鍵詞: Incremental clustering, Interpellation, Legislation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Parliamentary Library of Legislative Yuan website provides a fair and objective channel for the public to track daily activities of the Legislative Yuan and legislators’ inquiries. However the increased information content cause information overloading problem. To mitigate this program, this study proposed an incremental clustering mechanism to renew the information regularly and transform information from text to statics.
    This study first initiates a basic categorical structure by two-stage clustering algorithm. Then the incremental clustering method is applied to group related documents corresponding to the same topic into clusters and designates these clusters into existing category or create a new category.
    Experimental results show the effectiveness of that the proposed incremental clustering method, which enables the management of hierarchical categorical structure on legislative interpellation. With this results, people can track the legislative activities using the information from the Parliamentary Library of Legislative Yuan to recognize the interpellations in each category.


    1 Introduction 1 1.1 Research Background 1 1.2 Research Motivation 2 1.3 Research Objective 3 1.4 Thesis Framework 4 2 Literature Review 5 2.1 Information Extraction 5 2.2 Clustering Algorithm 5 2.2.1 Hierarchical Clustering 6 2.2.2 Partitioning Clustering 8 2.2.3 Two-stage Clustering 10 2.2.4 Inconsistency Coefficient 10 2.3 Incremental Clustering 11 2.4 Silhouette Coefficient 12 2.5 Labeling Hierarchical Clusters 13 3 Research Methodology 15 3.1 Definition 15 3.2 System Framework 17 3.3 Pre-process 17 3.4 Categorical structure Initialization 19 3.4.1 Stage 1 (hierarchical clustering) 20 3.4.2 Stage 2 (k-means clustering) 21 3.5 Incremental Clustering 22 3.5.1 Issue Identification 22 3.5.2 Categorical structure Maintenance 23 3.5.3 Naming Categories 28 4 System Implementation and Results 30 4.1 Data Source 30 4.2 System Implementation 31 4.3 System Results 34 5 Evaluation Design and Results 37 5.1 Evaluation Criteria 37 5.2 Experimental Design 38 5.3 Evaluation Results and Discussions 39 6 Conclusion and Future Work 41 References 43

    Atteveldt, W. V., Kleinnijenhuis, J., Ruigrok, N., & Schlobach, S. (2008). Good News or Bad News? Conducting sentiment analysis on Dutch text to distinguish between positive and negative relations. Journal of Information Technology & Politics, 5(1), 73-94.
    Berghel, H. (1997). Cyberspace 2000: Dealing with information overload. Communications of the ACM, 40(2), 19-24.
    Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster Analysis (fourth.). Arnold, London.
    Hsu, C. C., & Wang, S. H. (2006). An integrated framework for visualized and exploratory pattern discovery in mixed data. IEEE transactions on Knowledge and Data Engineering, 161-173.
    Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data.
    Jin-Jao, L. (2006). The Study of Interpellation System of Legislative Yuan in R.O.C. Journal of TOKO, 1(1).
    Kaufman, L., & Rousseeuw, P. J. (2005). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley's Series in Probability and Statistics. John Wiley and Sons, New York.
    King, B. (1967). Step-wise clustering procedures. Journal of the American Statistical Association, 62(317), 86-101.
    Korenius, T., Laurikkala, J., & Juhola, M. (2007). On principal component analysis, cosine and Euclidean measures in information retrieval. Information Sciences, 177(22), 4893-4905.
    Korenius, T., Laurikkala, J., Juhola, M., & Jarvelin, K. (2006). Hierarchical clustering of a Finnish newspaper article collection with graded relevance assessments. Information Retrieval, 9(1), 33-53.
    Ku, L. (2000). A study on the multilingual topic detection of news articles. Master Dissertation, Department of Computer Science and Information Engineering, National Taiwan University.
    Liao, Y. (2006). The Research of Voter Turnout: Case Study in Taiwan. The Journal of Chinese Public Administration, (3), 185-202.
    Lin, F., & Hsueh, C. (2006). Knowledge map creation and maintenance for virtual communities of practice. Information Processing & Management, 42(2), 551-568.
    MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, p. 14). California, USA.
    MathWorks, I. (2007). Statistics toolbox 6: User's guide. MathWorks.
    Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45(3), 325-342.
    Muhr, M., Kern, R., & Granitzer, M. (2010). Analysis of structural relationships for hierarchical cluster labeling. In Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 178-185). ACM.
    Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: review and suggestions for application. Journal of marketing research, 20(2), 134-148.
    Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.
    Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy: the principles and practice of numerical classification. San Francisco, 21.
    Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244.
    Widyantoro, D. H., Ioerger, T. R., & Yen, J. (2002). An incremental approach to building a cluster hierarchy. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM'02) (p. 705). Citeseer.
    Wong, W. C., & Fu, A. (2000). Incremental document clustering for web page classification. In IEEE International Conference on Information Society in the 21st Century: Emerging Technologies and New Challenges. Citeseer.
    Zamir, O., & Etzioni, O. (1998). Web document clustering: A feasibility demonstration. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 46-54). ACM.
    立法院法制局. (2004). 立法原理與制度. 立法院法制局.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE