研究生: |
曾慧玉 Ariel |
---|---|
論文名稱: |
建構廣義指示函數暨時間序列分析之半導體製造光罩需求預測模式及其實證 Mask Demand Forecast with GIFTS Model and an Empirical Study for Semiconductor Manufacturing |
指導教授: |
簡禎富
Chien, Chen Fu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 需求預測 、製造策略 、技術生命週期 、機率密度函數 、時間序列分析 、改良式動差估計法 、光罩 、產能規劃 |
外文關鍵詞: | Demand Forecast, Manufacturing Strategy, Probability Density Function, Time Series Analisis, Modified Method of Moment, Capacity Planning, Mask, Technology Life Cycle |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於半導體製程科技業而言,產能規劃與管理受到需求預測準確性及需求變動的影響很大,而為了有效利用產能及資本投資,再加上產能建置的提前準備時間,因此必須針對未來一段時間內的需求進行預估,以便作為與產能規劃、設備採購與產能建置相關之決策的基礎。其中,景氣程度以及公司生產策略的變動經常影響顧客訂單的數量,且因應市場對高科技產品之強烈需求半導體市場規模日益擴大,積體電路製程精密度隨著時代演進而更加地複雜,且新製程推出的速度越來越快、製程的生命週期隨著新製程的推出而呈現右偏的趨勢等,造成需求預測的複雜性。
因此,本研究針對半導體製程光罩訂單需求資料,利用系統化的方法針對顧客對半導體光罩需求建立需求預測架構,可以協助公司制定市場行銷計畫以及良好的產能策略,以提昇公司整體獲利。因為半導體製程科技世代間的差異,所以無法完全使用舊的製程技術預測領先製程未來需求。本研究利用系統化及參數化模式建構過程得到廣義指示函數為製程之生命週期趨勢,並搭配時間序列分析過程進行趨勢分解過濾後之需求波動偵測,應用機率性模式與時間序列模式,分析及觀察各半導體製程的需求變化及生命週期型態改變的情況,萃取出有價值的資訊,以作為管理者訂定中長期需求管理規劃的參考依據。本研究並以某半導體廠為實證,以檢驗本研究之效度。驗證結果顯示,本研究所提出之半導體製程光罩需求預測架構可以有效提升預測準確度且提供相同問題定義下之製程光罩預測模式,以提供管理者發展中長期需求預測和產能規劃的決策基礎。
In semiconductor industry, demand fluctuation has great influence on demand management. Demand prediction is necessary to be the foundation of utilization and material planning. Demand variation may be largely caused by prosperity and changed production strategy. Indeed, more complexity of the number of transistors on a square centimeter of silicon and high speed of new technology development because of advanced products requirements increased. It leads to long-term technology life cycle with increasing customer orders.
This research aims to develop a demand forecasting framework that consists of general indicatory function acquisition and parametric fluctuation fine-tuning in semiconductor foundry to forecast mask demand. It consists of a probability model for modeling technology life cycle and time domain approach for demand variation detection. An empirical study was conducted to validate developed demand forecasting framework. The result showed proposed forecasting framework can promote forecasting accuracy and provide a general mask demand forecasting model under the same problem definition to reduce decision uncertainty. It can provide valuable information for managers to support their decisions for demand forecasting and capacity planning.
References
Anderson, C. R. and C. P. Zeithaml, (1984), “Stage of the Product Life Cycle, Business Strategy, and Business Performance,” Academy of Management Journal, 27(1), 5-24.
Anderson, T. W., (1984), An Introduction to Multivariate Statistical Analysis, John Wiley, New York.
Andrews, R. L., (1994), “Forecasting performance of structural time series models,” Journal of Business Econometric Statistics, 12, 129-133.
Beran, J., (1992), “Statistical methods for data with long-range dependence,” Statistical Science, 7, 404-427.
Bollerslev, T., Y. Chou and K. F. Kroner, (1992), “ARCH models in finance.” Journal of Econometrics, 52, 5-59.
Box, G. E. P. and G. M. Jenkins, (1976), Time Series Analysis, Forecasting and Control, Revised Edition, Holden Day, San Francisco.
Brown, R. G. and R. F. Meyer, (1961), “The fundamental theorem of exponential smoothing,” Operational Research Quarterly, 9(5), 673-685.
Chatfield, C., (1988), “What is the ‘best’ method of forecasting?” Journal of Applicant Statistics, 15, 19-38.
Chatfield, C. and M. Yar, (1988), “Holt-Winters Forecasting: Some Practical Issues,” Statistician, 37(2), 129-140.
Chien, C.-F., (2005), Decision Analysis and Management: A Unison framework for Total Decision Quality Enhancement, Yeh Yeh, Taipei.
Chien, C.-F., S. Chen and Y. Lin, (2002), “Using Bayesian Network for Fault Location on Distribution Feeder of Electrical Power Delivery Systems,” IEEE Transactions on Power Delivery, 17(13), 785-793.
Chien, C.-F., T. H. Lin, C. Y. Peng, and S. C. Hsu, (2001), “Developing Data Mining Framework and Methods for Diagnosing Semiconductor Manufacturing Defects and an Empirical Study of Wafer Acceptance Test Data in a Wafer Fab,” Journal of the Chinese Institute of Industrial Engineers, 18(4), 37-48.
Chien, C.-F. and J. Wu (2003), “Analyzing Repair Decisions in the Site Imbalance Problem of Semiconductor Test Machines”, IEEE Transactions on Semiconductor Manufacturing, 16(4), 704-711.
Chien, C.-F., W. Wang, and J. Cheng (2007), “Data mining for yield enhancement in semiconductor manufacturing and an empirical study,” Expert Systems with Applications, 33, 192-198.
Clemen, R. T., (1989), “Combining forecasts: a review and annotated bibliography,” International Journal of Forecasting, 5, 559-583.
Ding, J., P. M. Jin, S. H. Yang and J. L. Jin, (2001), “Application of genetic threshold auto-regressive model to forecasting meteorological time series,” Journal of Tropical Meteorology, 4.
Dollar, D., (1986), “Technological Innovation, Capital Mobility and the Product Life Cycle in North-South Trade,” American Economic Review, 76, 177-190.
Faraway, J. and C. Chatfield, (1998), “Time series forecasting with neural networks: a comparative study using the air line data,” Applicant Statistics, 47.
Fienberg, S. E., M. S. Johnson and B. W. Junker, (1999), “Classical Multilevel and Bayesian Approaches to Population Size Estimation Using Multiple Lists,” Journal of the Royal Statistical Society, A, 162(3), 383-405.
Fildes, R. and S. Makridakis, (1995), “The impact of empirical accuracy studies on time series analysis and forecasting,” International Statistical Review, 63, 289-308.
Han, J. and M. Kamber, (2003), Data Mining Concepts and Techniques, Morgan Kaufmann, Singapore.
Harvey, A. C., (1995), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.
Heston, S. L., (1993), “A closed-form solution for options with stochastic volatility with applications,” Heston Review Financial Study, 6, 327-343.
Hill, T., L. Marquez, M. O’Connor and W. Remus, (1994), “Artificial neural network models for forecasting and decision making,” International Journal of Forecast, 10, 5-15.
Kadiyala, K. R. and S. Karlsson, (1993), “Forecasting with generalized Bayesian vector autoregressions,” Journal of Forecast, 12, 365-378.
Levitt, T., (1965), “Exploit the Product Life Cycle,” Harvard Business Review, 43, 81-94.
Lim, C. and M. McAleer, (2002), “Time series forecasts of international travel demand for Australia,” Tourism Management, 23, 389-396.
Lin, Z. M., (2006), Production Planning and Management, Hwa Tai, Taipei.
Lin, J. L. and C. W. J. Granger, (1994), “Forecasting from non-linear models in practice,” Journal of Forecasting, 13, 1-9.
Loury, G. C., (1979), “Market Structure and Innovation,” Quarterly Journal of Economics, 93, 395-410.
Mahajan V., E. Muller and F. M. Bass, (1990), “New Product Diffusion Models in Marketing: A Review and Directions for Research,” Journal of Marketing, 54, 1-26.
Makridakis, S., C. Chatfield, M. Hibon, M. Lawrence, T. Mills, K. Ord and L. F. Simmons, (1993), “The M2-Competition: a real-time judgmentally based forecasting study,” International Journal of Forecasting, 9, 5-23.
Makridakis, S. and M. Hibon, (1979), “Accuracy of forecasting: an empirical investigation (with discussion),” Journal of Royal Statistical Society, A, 142, 97-145.
Makridakis, S. and M. Hibon, (2000), “The M3-Competition: results, conclusions and implications,” International Journal of Forecasting, 16, 451-476.
Newbold, P. and C. W. J. Granger, (1974), “Experience with forecasting univariate time series and the combination of forecasts (with discussion),” Journal of Royal Statistical Society, A, 137, 131-165.
Profillidis, V. A., (2000), “Economic and fuzzy models for the forecast of demand in the airport of Rhodes,” Journal of Air Transport Management, 6, 95-100.
Raab, G. M., S. M. Gore, D. J. Goldberg and C. A. Donnelly, (1994), “Bayesian Forecasting of the Human Immunodeficiency Virus Epidemic in Scotland,” Journal of the Royal Statistical Society, A, 157, 17-30.
Reinganum, J. F., (1982), “A Dynamic Game of R&D: Patent Protection and Competitive Behavior,” Econometrica, 50, 671-688.
Reinsel, G. C., (1993), Elements of Multivariate Time Series Analysis, New York: Wiley.
Roberts, J. W., (2001), “Traffic theory and the internet,” IEEE Communication Magazine, 39(1), 94-99.
Rohatgi, V. K., (1976), An introduction to probability theory and mathematical statistics, Wiley, New York.
Segerstrom P. S., T. C. A. Anant and E. Dinopoulos, (1990), “A Schumpeterian Model of the Product Life Cycle,” The American Economic Review, 80(5), 1077-1091.
Spencer, B. J. and J. A. Brander, (1983), “International R&D Rivalry and Industrial Strategy,” Review of Economic Studies, 50, 707-722.
Stock, J. H. and M. W. Watson, (1996), “Evidence on Structural Instability in Macroeconomic Time Series Relations,” Journal of Business & Economic Statistics, 14(1), 11-30.
Taylor, S. J., (1994), “Modeling stochastic volatility: a review and comparative study,” Mathematical Finance, 4, 183-204.
Tiao, G. C. and R. S. Tsay, (1994), “Some advances in non-linear and adaptive modeling in time-series,” Journal of Forecasting, 13, 109-131.
Webby, R. and M. O’Connor, (1996), “Judgmental and statistical time series forecasting: a review of the literature,” International Journal of Forecasting, 12, 91-118.
West, M. and J. Harrison, (1997), Bayesian Forecasting and Dynamic Models, 2nd, New York: Springer.
Yin, H., C. Lin, B. Sebastien, B. Li and G. Min, (2005), “Network traffic prediction based on a new time series model,” International Journal of Communication Systems, 18, 711-729.
Zhang, B. L. and Z. Y. Dong, (2001), “An adaptive neural-wavelet model for short term load forecasting,” Electric Power Systems Research, 59, 121-129.