簡易檢索 / 詳目顯示

研究生: 鄭佩怡
Cheng, Pei-Yi.
論文名稱: 基於超導快速單磁通量子電路上考慮長度匹配之多端點繞線
Multi-Terminal Routing with Length-Matching for Rapid Single Flux Quantum Circuits
指導教授: 何宗易
Ho, Tsung-Yi
口試委員: 黃俊達
Huang, Juinn-Dar
李淑敏
Li, Shu-Min
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 34
中文關鍵詞: 繞線超導快速單磁通量子電路長度匹配
外文關鍵詞: routing, RSFQ, length-matching
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時脈頻率的增加,超導快速單磁通量子電路之時脈要求對於實現正確的電路功能極為重要。為滿足此要求,必須將長度匹配之條件納入繞線問題中。然而,現有繞線方法本質上是受限的,受限於預先配置的分離器,這使後續的繞線在長度匹配的限制下,變得更加複雜化。因此,在本論文中,我們透過重新配置分離器,將可以充分利用繞線資源,並有效地應對長度匹配問題。我們提出了第一個對於此電路之多端點的繞線演算法,將分離器的配置問題整合到繞線階段處理。由實驗結果證實,在實際電路上,我們提出的演算法可以完成繞線,同時減少17%所需面積。與過去的方法[1]相比,儘管在分離器預先配置的情況下,我們可以仍可以取得7%的改善。


    With the increasing clock frequencies, the timing requirement of Rapid Single Flux Quantum (RSFQ) digital circuits is critical for achieving the correct functionality. To meet this requirement, it is necessary to incorporate length-matching constraint into routing problem. However, the solutions of existing routing algorithms are inherently limited by pre-allocated splitters (SPLs), which complicates the subsequent routing stage under length-matching constraint. Hence, in this thesis, we reallocate SPLs to fully utilize routing resources to cope with length-matching effectively. We propose the first multi-terminal routing algorithm for RSFQ circuits that integrates SPL reallocation into the routing stage. The experimental results on a practical circuit show that our proposed algorithm achieves routing completion while reducing the required area by 17\%. Comparing to [1], we can still improve by 7\% with less runtime when SPLs are pre-allocated.

    Acknowledgement i Abstract ii 1 Introduction 1 1.1 Rapid Single Flux Quantum (RSFQ) Logic . . . . . . . . . . . . . . . . . 1 1.2 Timing Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Routing Problem of Length-Matching . . . . . . . . . . . . . . . . . . . . 4 1.5 Multi-Terminal Routing Problem . . . . . . . . . . . . . . . . . . . . . . . 6 2 Problem Formulation 10 3 Multi-Terminal Routing Algorithm 12 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 SPL-Aware Detoured Routing . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Empty-Vertex Insertion . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 SPL Allocation and Overlap Issue . . . . . . . . . . . . . . . . . . 18 3.2.3 Length-Matching against Channel Width . . . . . . . . . . . . . . 20 3.3 Column-Scanned Resource Distribution . . . . . . . . . . . . . . . . . . . 21 3.3.1 Column-Scanned Region Partition . . . . . . . . . . . . . . . . . . 21 3.3.2 Maximum-Flow Formulation . . . . . . . . . . . . . . . . . . . . . 22 3.4 Length-Matching-Driven Routing . . . . . . . . . . . . . . . . . . . . . . 25 4 Experimental Results 28 4.1 Multi-Terminal Routing on a 16-Bit Sklansky Adder . . . . . . . . . . . . 28 4.2 Single Terminal Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Conclusion 32 References 33

    [1] N. Kito, K. Takagi, and N. Takagi, “Automatic wire-routing of sfq digital circuits
    considering wire-length matching,” IEEE Transactions on Applied Superconductivity,
    vol. 26, no. 3, pp. 1–5, 2016.
    [2] N. Kito, K. Takagi, and N. Takagi, “A fast wire-routing method and an automatic layout
    tool for rsfq digital circuits considering wire-length matching,” IEEE Transactions on
    Applied Superconductivity, vol. 28, no. 4, pp. 1–5, 2018.
    [3] R. Sato, Y. Hatanaka, Y. Ando, M. Tanaka, A. Fujimaki, K. Takagi, and N. Takagi,
    “High-speed operation of random-access-memory-embedded microprocessor with
    minimal instruction set architecture based on rapid single-flux-quantum logic,” IEEE
    Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1–5, 2017.
    [4] K. Obata, K. Takagi, and N. Takagi, “A clock scheduling algorithm for high-throughput
    rsfq digital circuits,” IEICE Transactions on Fundamentals of Electronics, Communications
    and Computer Sciences, vol. 91, no. 12, pp. 3772–3782, 2008.
    [5] W. Chen, A. Rylyakov, V. Patel, J. Lukens, and K. Likharev, “Rapid single flux quantum
    t-flip flop operating up to 770 ghz,” IEEE Transactions on Applied Superconductivity,
    vol. 9, no. 2, pp. 3212–3215, 1999.
    [6] G.-M. Tang, P.-Y. Qu, X.-C. Ye, and D.-R. Fan, “Logic design of a 16-bit bit-slice
    arithmetic logic unit for 32-/64-bit rsfq microprocessors,” IEEE Transactions on Applied
    Superconductivity, vol. 28, no. 4, pp. 1–5, 2018.
    [7] T. Yoshimura and E. S. Kuh, “Ecient algorithms for channel routing,” IEEE Transactions
    on Computer-Aided Design of Integrated Circuits and Systems, vol. 1, no. 1,
    pp. 25–35, 1982.

    QR CODE