簡易檢索 / 詳目顯示

研究生: 李易茱
Li, Yi-Zhu
論文名稱: 將 Fox, Kim 與 Yang 對於估計隨機係數的無母數方法與約束最佳化方法連結
Linking Fox, Kim, and Yang’s Nonparametric Estimation of Random Coefficients with Constrained Optimization
指導教授: 李雨青
Lee, Yu-Ching
口試委員: 陳勝一
李捷
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 61
中文關鍵詞: 純特徵需求模型隨機係數無母數估計具有平衡約束的數學規劃廣異動差估計
外文關鍵詞: Pure Characteristics Demand Model, Random Coefficient, Nonparametric Estimation, Mathematical Program with Equilibrium Constraints, Generalized Method of Moment
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,需求預測一直是經濟學中研究的經典主題。而隨機係數的離散選擇
    模型被廣泛應用在不同產品的市場中來揭示消費者對產品的異質偏好。
    本文建立了一個具有數學規劃均衡約束的最佳化模型,並使用Fox等人(2011)
    年提出的無母數方法來估計純特徵需求模型中的隨機係數,然後利用這些隨機係
    數來預測個體的決策。
    Fox 等人(2011)提出了一種簡單且計算上具有優勢的混合方法來估計隨機
    係數的分佈。該方法固定一個隨機係數的網格,並且僅估計網格點上的權重,通
    過這些網格點的權重的線性組合來近似整個隨機係數的分佈。這種方法使我們能
    夠估計隨機係數的聯合分佈,而不需要對分佈做出假設。
    我們打算運用 AMPL 來進行數值實驗,以驗證我們提出的無母數均衡限制
    式最佳化模型的準確性,透過觀察在不同問題規模下進行實驗的結果,我們能夠
    更深入地瞭解該模型的效能。此外,我們也將比較在不同問題大小下使用隨機網
    格和固定網格、不同工具變量時模型的表現。我們的目標是將來在處理真實世界
    的大規模數據時,可以在保持執行效率的同時,取得格點數量和實際需求之間的
    平衡。


    Estimation of demand has been the subject of many classic studies in recent
    economics. Recently, the discrete choice model with random coefficients has been
    widely applied in discerning heterogeneous preferences over consumers in various
    product markets.
    This paper builds a constrained optimization model called the Mathematical
    Program with Equilibrium Constraint (MPEC) to estimate the random coefficients in
    the pure characteristic demand model using the nonparametric method proposed by Fox
    et al. (2011), then we will utilize these coefficients to predict individual decisions.
    Fox et al. (2011), hereafter FKRB, proposed a simple and computationally
    attractive mixture approach to estimate the random coefficients’ distribution. The
    estimator fixes a grid of heterogenous parameters and estimates only the weights on the
    grid points, and then finds the proper mixture of those models that best approximates
    the actual data. This approach allows us to estimate the joint distribution of random
    coefficients without having to impose a specific distribution.
    We intend to conduct numerical experiments using the AMPL, which is a
    mathematical program language, to validate the accuracy of our proposed nonparametric equilibrium-constrained optimization model. By observing the results of
    5
    these experiments on different problem scales, we can gain further insights into the
    performance of the model. Additionally, we will compare the performance of the model
    when using random grids versus fixed grids, as well as when employing different tool
    variables. Our objective is to achieve a balance between the number of grid points and
    execution efficiency in future scenarios while working with real-world and large-scale
    data.

    Abstract 4 中文摘要 6 Chapter1 Introduction 7 Chapter 2 Literature Review 12 2.1 Pure characteristics demand model 13 2.2 Inverse optimization for random coefficients utility estimation 14 2.3 Generalized Method of Moment (GMM) 16 2.4 Nonparametric estimation 19 2.4.1 Random grid / Fixed grid for selected characteristics 20 2.4.2 Concept for proving the consistency 22 Chapter3 Experiment 25 3.1 The constructive approach to reformulate the problem 25 3.2 Consistency for the nonparametric GMM estimator 28 3.3 The environment of experiments 35 3.4 The data description 36 3.5 Design of experiments 37 3.5.1 Utility function estimation with constraints 38 3.5.2 Estimation of the grids’ weight 40 3.5.3 How to validate the effectiveness 41 3.5.4 The efficiency and computing limit 42 Chapter 4 Numerical Result and Analysis 44 4.1 Validating the effectiveness of in-sample prediction 44 4.2 Validating the efficiency and computing limit for single machine 50 4.3 Additional experiment for model validation 52 Chapter 5 Conclusion and Future direction 58 References 61

    1. Fox, J. T., Kim, K. I., Ryan, S. P., & Bajari, P. (2011). A simple estimator for the distribution of random coefficients. Quantitative Economics, 2(3), 381-418.
    2. Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica: Journal of the Econometric Society, 841-890.
    3. Berry, S., & Pakes, A. (2007). The pure characteristics demand model. International Economic Review, 48(4), 1193-1225.
    4. Su, C. L., & Judd, K. L. (2012). Constrained optimization approaches to estimation of structural models. Econometrica, 80(5), 2213-2230.
    5. Dubé, J. P., Fox, J. T., & Su, C. L. (2012). Improving the numerical performance of static and dynamic aggregate discrete choice random coefficients demand estimation. Econometrica, 80(5), 2231-2267.
    6. Pang, J. S., Su, C. L., & Lee, Y. C. (2015). A constructive approach to estimating pure characteristics demand models with pricing. Operations Research, 63(3), 639-659.
    7. Fox, J. T., Kim, K. I., & Yang, C. (2016). A simple nonparametric approach to estimating the distribution of random coefficients in structural models. Journal of Econometrics, 195(2), 236-254.
    8. Hausman, J. (1997). Valuation of New Goods under Perfect and Imperfect Competition, The Economics of New Goods. Bresnahan, Tim and Gordon, Robert, eds.
    9. Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica: Journal of the econometric society, 1029-1054.
    10. Luo, Z. Q., Pang, J. S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge University Press.
    11. Chen, X., & Pouzo, D. (2012). Estimation of nonparametric conditional moment models with possibly nonsmooth generalized residuals. Econometrica, 80(1), 277-321.
    12. Huber, P. J., & Ronchetti, E. M. (1981). Robust Statistics, Wiley: New York.
    13. Parthasarathy, K. R. (1967). Probability measures on metricspaces Academic Press. New York.
    14. Fox, J. T., & Gandhi, A. (2016). Nonparametric identification and estimation of random coefficients in multinomial choice models. The RAND Journal of Economics, 47(1), 118-139.

    QR CODE