簡易檢索 / 詳目顯示

研究生: 梁欣雅
論文名稱: First-Principles study on Electronic Structures of II-VI Isovalent Alloy and Mn-doped CdS
指導教授: 鄭弘泰
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 71
中文關鍵詞: 第一原理II-VI族半導體稀磁性半導體
外文關鍵詞: first-principles, ab initio, II-VI semiconductors, diluted magnetic semiconductors
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We use plane wave method to study the electronic structure of II-VI semiconductor and Mn-doped CdS. II-VI semiconductors: Zn(x)Cd(1-x)S and CdS(1-x)Se(x) having widely light emitting spectrum are promising materials of light emitting diodes. Mn-doped CdS is material for diluted magnetic semiconductors which is potential spintronics devices. We discuss the concentration dependent physics such as lattice and band gap in Zn(x)Cd(1-x)S and CdS(1-x)Se(x), and the magnetic property in Mn-doped CdS.


    1 Introduction 3 2 Density Functional theory 6 2.1 Hohenberg-Kohn Theory[1] 6 2.2 Kohn-Sham equation[2] 9 2.3 Local density approximation 10 2.4 Generalized gradient approximation 11 2.5 The LDA+U method 11 3 Computational method 14 3.1 PseudoPotential method 14 3.1.1 Orthogonal plane wave scheme 14 3.1.2 Norm-conserving pseudopotential 15 3.1.3 Ultrasoft pseudopotential 16 3.2 Plane wave method 16 3.2.1 Augmented plane wave method 16 3.2.2 Projector augmented wave method 19 4 Investigation of II-VI semiconductor alloys 21 4.1 Ternary alloys property[3, 4] 22 4.2 Literature survey 25 4.3 Computational detail 27 4.4 Result 28 4.4.1 Lattice constant 31 4.4.2 Band gaps 35 4.4.3 Optical bowing factor 42 4.5 Conclusion 43 5 Diluted magnetic semiconductor MnxCd1−xS 52 5.1 Literature survey 52 5.2 Computational detail 53 5.3 Results 53 5.3.1 Antiferromagnetic ground state 54 5.3.2 Density of states 55 5.3.3 Mn-Mn exchange coupling constant 56 5.4 Conclusion 59

    [1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
    [2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
    [3] J. E. Bernard and A. Zunger, Phys. Rev. B 36, 3199 (1987).
    [4] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures
    (CAMBRIDGE, 2003).
    [5] M. Jain, II-VI SEMICONDUCTOR COMPOUNDS (World Science, 1993).
    [6] V. Ladizhansky, V. Lyahovitskaya, and S. Vega, Phys. Rev. B 60, 8097 (1999).
    [7] D.H.Kim, D.J.Lee, N.M.Kim, S.J.Lee, and T.W.Kang, J. Appl. Phys 101,
    094111 (2007).
    [8] C. S. Wang, B. M. Klein, and H. Krakauer, Phys. Rev. Lett. 54, 1852 (1985).
    [9] G. Y. Guo and H. H. Wang, Chin.J.Phys. 38, 949 (2000).
    [10] M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).
    [11] G. Kresse and J. Furthmuller, Vienna Ab-initio Simulation Package
    (http://cms.mpi.univie.ac.at/VASP/, 2005).
    [12] W. E. Pickett, Computer.Phys.Reports 9, 115 (1989).
    [13] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
    [14] P. E. Bl‥ochl, Phys. Rev. B 50, 17953 (1994).
    [15] C.-Y. Moon, S.-H. Wei, Y. Z. Zhu, and G. D. Chen, Phys. Rev. B 74, 233202
    (2006).
    [16] F. S‥okeland, M. Rohlfing, P. Kr‥uger, and J. Pollmann, Phys. Rev. B 68,
    075203 (2003).
    [17] O. Madelung, SEMICONDUCTOR: Data Handbook (Springer, 2003).
    [18] V. Kumar, V. Singh, S. K. Sharma, and T. Sharma, Optical Materials 11, 29
    (1998).
    [19] I. Akyuz, S. Kose, F. Atay, and V. Bilgin, Materials Science in Semiconductor
    Processing 10, 103 (2007).
    [20] G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and M. Pallara, Solid State
    Communications 114, 161 (2000).
    [21] M. Ambrico et al., SPIE 3404, 161 (1998).
    [22] M. P.Marder, Condensed Matter Physics (John Wiley and SONs.INC, 2000).
    [23] C. j. Chen, M. Qu, X. Zhang, F. Lin, and H. B. Hu, J.Appl.Phys 69, 6114
    (1991).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE