簡易檢索 / 詳目顯示

研究生: 曾惠淇
Hui-Chi Zeng
論文名稱: 結合前景抽取及人形偵測之視訊監測分析
Video Surveillance Analysis Based on Combining Foreground Extraction and Human Detection
指導教授: 賴尚宏
Shang-Hong Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 52
中文關鍵詞: 監視器系統前景抽取人形偵測視訊監測
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出了一個在即時視訊監測上的前景抽取,結合使用AdaBoost機器學習演算法和HOG當特徵的人形偵測技術,並且利用以RANSAC為基礎的在時間軸上的追蹤理論來提高準確率。一般傳統的移除背景方法在有光影變化的情況下通常無法運作的很好。我們提出使用一個二步驟的前背景分離理論來移除背景以及那些受到陰影、自動白平衡和突然的光影變化所影響的背景。在前景抽取及人形偵測之後,我們利用時間軸上的資訊來提高人形偵測的準確率,使用以RANSAC為基礎的在時間軸上的追蹤理論來移除掉誤判及修復遺失的偵測結果。在一些真實的監視器影片上作的實驗結果證明,我們提出的前景抽取理論在各種有光影變化的不同環境下,以及人形偵測理論,都能有很好的性能。


    In this thesis, we present an adaptive foreground object extraction algorithm for real-time video surveillance, in conjunction with a human detection technique applied in the extracted foreground regions by using AdaBoost learning algorithm and Histograms of Oriented Gradient (HOG) descriptors. Furthermore, a RANSAC-based temporal tracking algorithm is also applied to refine and trace the detected human windows in order to increase the detection accuracy and reduce the false alarm rate. The traditional background subtraction technique usually cannot work well for situations with lighting variations in the scene. The proposed algorithm employs a two-stage foreground/background classification procedure to perform background subtraction and remove the undesirable subtraction results due to shadow, automatic white balance, and sudden illumination change. After foreground extraction and human detection, the temporal information is utilized to increase the detection accuracy by performing the RANSAC-based temporal tracking to remove the false alarms and recover the missed detections. Experimental results on some real surveillance video are shown to demonstrate the good performance of the proposed adaptive foreground extraction algorithm under a variety of different environments with lighting variations and human detection system.

    List of Figures ii List of Tables iii List of Algorithm iv 1 Introduction 1 2 Previous Work 3 3 Proposed Method 10 3.1 Two-Stage Foreground Extraction Algorithm 13 3.1.1 Background Modeling 15 3.1.2 Pixel-Wise Classifier 16 3.1.3 Region-Based Classification 18 3.2 Human Detection 20 3.2.1 Adaboost 21 3.2.2 HOG Descriptor 24 3.3 RANSAC-Based Temporal Tracking 26 3.3.1 Track Estimation 30 3.3.2 Voting 31 3.3.3 Missed Detection Recovery 32 4 Experimental Results 33 4.1 Two-Stage Foreground Extraction 33 4.1.1 Variety of Environments 34 4.1.2 Accuracy and Comparison 36 4.2 Human Detection 39 4.2.1 Database 39 4.2.2 Human Detection 40 4.2.3 RANSAC-Based Temporal Tracking 42 4.2.4 Accuracy Assessment of Human Tracking 44 5 Conclusions 47 6 Bibliography 48

    [1] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” IEEE International Conference on Computer Vision and Pattern Recognition, II: 246-252, June 1999.
    [2] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for background subtraction,” European Conference on Computer Vision, II: 751-767, June/July 2000.
    [3] O. Tuzel, F. Porikli, and P. Meer, “A bayesian approach to background modeling,” IEEE Workshop on Machine Vision for Intelligent Vehicles, III:58, 2005.
    [4] F. Porikli and J. Thornton, “Shadow flow: A recursive method to learn moving cast shadows,” IEEE International Conference on Computer Vision, I: 891-898, 2005.
    [5] S. S. Huang, L. C. Fu, and P. Y. Hsiao, “Region-level motion-based foreground detection with shadow removal using MRFs,” Asian Conference on Computer Vision, pages 878-887, 2006.
    [6] Y. L. Tian, M. Lu, and A. Hampapur, “Robust and efficient foreground analysis for real-time video surveillance,” IEEE International Conference on Computer Vision and Pattern Recognition, I: 1182-1187, June 2005.
    [7] C. Benedek and T.Sziranyi, “Markovian framework for foreground-background-shadow separation of real world video scenes,” Asian Conference on Computer Vision, I:898-907, 2006.
    [8] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Principles and practice of background maintenance,” IEEE International Conference on Computer Vision, I: 255-261, 1999.
    [9] K. Siala, M. Chakchouk, and O. Besbes, “Moving shadow detection with support vector domain description in the color ratios space,” International Conference on Pattern Recognition, IV: 384-387, 2004.
    [10] E. Osuna, R. Freund, and F. Girosi, “Training support vector machine: an application to face detection,” Proc. Conf. Computer Vision and Patter Recognition, pages 130-136, 1997.
    [11] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pages 23-38, 1998.
    [12] K. K. Sung and T. Poggio, “Example-based learning for view-based human face detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pages 39-51, 1998.
    [13] S. H. Huang and S. H. Lai, “Real-time face detection in color video,” Proceedings 10th International Multimedia Modeling Conference, pages 338-345, 2004.
    [14] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Computational Learning Theory. Eurocolt, pages 23-37, 1995.
    [15] P. Voila, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns of motion and appearance,” Proc. of IEEE International Conference on Computer Vision, Vol. 2, pages 734-741, 2003.
    [16] P. Viola and M. Jones “Roust real-time face detection,” International Journal of Computer Vision, Vol. 57, pages 137-154, 2004.
    [17] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer ,“Generic object recognition with boosting,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 28, No. 3, pages 416-431, 2006.
    [18] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pages 886-893, 2005.
    [19] P. Viola, M. J. Jones, and D. Snow. “Detecting pedestrians using patterns of motion and appearance,” IEEE International Conference on Computer Vision, Vol.1, pages 734-741, 2003.
    [20] D. Gavrila, “Pedestrian detection from a moving vehicle,” European Conference on Computer Vision, pages 37-49, 2000.
    [21] H. T. Chen, H. H. Lin, and T. L. Liu, “Multi-object tracking using dynamical graph matching”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pages 210-217, December 2001.
    [22] J. Zhou and J. Hoang, “Real time robust human detection and tracking system”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 3, page 149, 2005.
    [23] M. Hussein, W. A. Almageed, Y. Ran, and L. Davis, “Real-time human detection, tracking, and verification in uncontrolled camera motion environments”, IEEE International Conference on Computer Vision Systems, page 56, 2006.
    [24] C. Papageorgiou and T. Poggio, “A trainable system for object detection,” International Journal of Computer Vision, Vol. 38, No. 1, pages 15-33, 2000.
    [25] H. C. Zeng and S. H. Lai, “Adaptive foreground object extraction for real-time video surveillance with lighting variations,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 2007.
    [26] R. Haralick and L. Shapiro, “Computer and robot vision 1,” Addison Wesley, 1992.
    [27] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, 24(6):381-395, 1981.
    [28] J. B. MacQueen, “Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability,” Berkeley, University of California Press, 1:281-297, 1967.
    [29] W. Douglas Stirling, “Fitting the Exponential Curve by Least Squares,” Applied Statistics, Vol. 34, No. 2, pages 183-192, 1985.
    [30] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” Conference on Computer Vision and Pattern Recognition, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE