簡易檢索 / 詳目顯示

研究生: 沈欣懌
Shen, Sin-Yi
論文名稱: 利用一維度模擬二階與四階生物 離子通道模型的電位與濃度
1-Dimensional Simulation for Potential and Concentration in Second and Fourth Order Biological Ion Channel Models
指導教授: 李金龍
Li, Chin-Lung
口試委員: 劉晉良
Liu, Jinn-Liang
陳仁純
Chen, Ren-Chuen
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 44
中文關鍵詞: 離子通道四階二階射擊方法初始值問題邊界值問題
外文關鍵詞: ion channel, fourth order, second order, shooting method, initial value problem, boundary value condition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對氯化鉀離子通道,提出了相關長度為lc 的四階生物離子通道模型, 通
    過射擊方法對該模型進行數值模擬。我們的結果分為兩部分, 第一部分我們推導
    出具有lc = 0 的二階模型的一維穩態方程,並且氯化鉀離子通道的濃度和電位
    函數被完全說明, 第二部分介紹了具有lc ̸= 0 的四階模型的一維穩態方程,用於
    描述氯化鉀離子通道的濃度和電位函數的行為和分佈, 第二和第四模型之間的差
    異也討論了濃度和電位函數的圖。


    In this thesis, the fourth order biological ion channel model with the correlation length $l_c$ is proposed for the KCl channel. This model is numerically simulated via the shooting method. There are two parts for our results. The first part, we derive the one dimensional steady-state equations for the second order model with $l_c=0$, and the concentrations and potential functions are totally illustrated for the KCl channel. The second part, the one dimensional steady-state equations for the fourth order model with $l_c \ne 0$ is also presented for describing the behaviors and profiles of the concentrations and potential functions for the KCl channel. The difference between the second and the fourth model are also discussed for the graph of the concentrations and potential functions.

    Contents Abstract ...............................................i Acknowledgement .......................................iii 1 Introduction ........................................1 2 Biological Ion Channel Model .........................3 2.1 The Second Order Model in One Dimension . . . . . 6 2.2 The Fourth Order Model in One Dimension . . . . . . 9 3 Numerical Methods for Computation ...................11 3.1 Runge-Kutta Method for IVPs . . . . . . . ..... . . 11 3.2 Shooting Method for Nonlinear System .. . . . . . . 13 4 Simulation for the KCl Channel .......................14 4.1 Numerical Approach for lc = 0 . . . . . . . . . . 15 4.2 Numerical Approach for lc ̸= 0 . . . . . . . . . . . 18 4.3 Differences between lc = 0 and lc ̸= 0 . . . ... . . 23 5 Conclusion ...........................................28 References .............................................29 Appendix ...............................................32

    [1] M. Z. Bazant, B. D. Storey, and A. A. Kornyshev. Double layer in ionic liquids:
    Overscreening versus crowding. Physical Review Letters, 106(4):046102,
    2011.
    [2] R. L. Burden and J. Faires. Numerical analysis, books, 1997.
    [3] R. A. DeFronzo, J. D. Tobin, and R. Andres. Glucose clamp technique: a
    method for quantifying insulin secretion and resistance. American Journal of
    Physiology-Endocrinology And Metabolism, 237(3):E214, 1979.
    [4] R. Eisenberg, M. Kl/osek, and Z. Schuss. Diffusion as a chemical reaction:
    Stochastic trajectories between fixed concentrations. The Journal of chemical
    physics, 102(4):1767–1780, 1995.
    [5] R. S. Fisher, W. v. E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, and
    J. Engel. Epileptic seizures and epilepsy: definitions proposed by the international
    league against epilepsy (ilae) and the international bureau for epilepsy
    (ibe). Epilepsia, 46(4):470–472, 2005.
    [6] C. L. Gardner, W. Nonner, and R. S. Eisenberg. Electrodiffusion model
    simulation of ionic channels: 1d simulations. Journal of Computational Elec-
    tronics, 3(1):25–31, 2004.
    [7] D. Gillespie, W. Nonner, and R. S. Eisenberg. Coupling poisson–nernst–
    planck and density functional theory to calculate ion flux. Journal of Physics:
    Condensed Matter, 14(46):12129, 2002.
    [8] R. C. Griggs, R. T. Moxley, R. A. Lafrance, and J. McQuillen. Hereditary
    paroxysmal ataxia response to acetazolamide. Neurology, 28(12):1259–1259,
    1978.
    [9] C.-L. Li and J.-L. Liu. A generalized Debye-H¨uckel equation from Poisson-
    Fermi theory. 2018 preprint.
    [10] C.-L. Li and J.-L. Liu. A Generalized Debye-H¨uckel Theory of Electrolyte
    Solutions Based on Poisson-Fermi Equation. 2018 preprint.
    [11] J.-L. Liu. A quantum corrected poisson-nernst-planck model for biological
    ion channels. Molecular Based Mathematical Biology, 3(1), 2015.
    [12] J.-L. Liu and B. Eisenberg. Poisson–fermi model of single ion activities in
    aqueous solutions. Chemical Physics Letters, 637:1–6, 2015.
    [13] J.-L. Liu and B. Eisenberg. Poisson-fermi modeling of ion activities in aqueous
    single and mixed electrolyte solutions at variable temperature. The Journal
    of chemical physics, 148(5):054501, 2018.
    [14] M. Mezger, H. Schr¨oder, H. Reichert, S. Schramm, J. S. Okasinski, S. Sch¨oder,
    V. Honkim¨aki, M. Deutsch, B. M. Ocko, J. Ralston, et al. Molecular layering
    of fluorinated ionic liquids at a charged sapphire (0001) surface. Science,
    322(5900):424–428, 2008.
    [15] W. Nonner, D. P. Chen, and B. Eisenberg. Anomalous mole fraction effect,
    electrostatics, and binding in ionic channels. Biophysical Journal, 74(5):2327–
    2334, 1998.
    [16] W. Nonner and B. Eisenberg. Ion permeation and glutamate residues linked
    by poisson-nernst-planck theory in l-type calcium channels. Biophysical Jour-
    nal, 75(3):1287–1305, 1998.
    [17] T. F. of the European Society of Cardiology et al. Heart rate variability,
    standards of measurement, physiological interpretation, and clinical use. cir-
    culation, 93:1043–1065, 1996.
    [18] R. E. Pettit and G. M. Fenichel. Benign familial neonatal seizures. Archives
    of neurology, 37(1):47–48, 1980.
    [19] M. B. Reid. Invited review: redox modulation of skeletal muscle contraction:
    what we know and what we don’t. Journal of Applied Physiology, 90(2):724–
    731, 2001.
    [20] S. Schoch, P. E. Castillo, T. Jo, K. Mukherjee, M. Geppert, Y. Wang,
    F. Schmitz, R. C. Malenka, and T. C. S¨udhof. Rim1α forms a protein
    scaffold for regulating neurotransmitter release at the active zone. Nature,
    415(6869):321, 2002.
    [21] M. R. Spiegel and S. Lipschutz. Schaum’s Outline of Vector Analysis. McGraw
    Hill Professional, 2009.
    [22] P. Szepetowski, J. Rochette, P. Berquin, C. Piussan, G. M. Lathrop, and
    A. P. Monaco. Familial infantile convulsions and paroxysmal choreoathetosis:
    a new neurological syndrome linked to the pericentromeric region of human
    chromosome 16. The American Journal of Human Genetics, 61(4):889–898,
    1997.

    QR CODE